- -

Modelado de sistemas bioquímicos: De la Ley de Acción de Masas a la Aproximación Lineal del Ruido

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Modelado de sistemas bioquímicos: De la Ley de Acción de Masas a la Aproximación Lineal del Ruido

Show full item record

Picó, J.; Vignoni, A.; Picó-Marco, E.; Boada, Y. (2015). Modelado de sistemas bioquímicos: De la Ley de Acción de Masas a la Aproximación Lineal del Ruido. Universitat Politècnica de València. https://doi.org/10.1016/j.riai.2015.06.001

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143649

Files in this item

Item Metadata

Title: Modelado de sistemas bioquímicos: De la Ley de Acción de Masas a la Aproximación Lineal del Ruido
Secondary Title: Modelling biochemical systems: from Mass Action Kinetics to Linear Noise Approximation
Author: Picó Marco, Jesús Andrés Vignoni, Alejandro Picó i Marco, Enric Boada Acosta, Yadira Fernanda
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica
Issued date:
Abstract:
[EN] In the last decade we have witnessed a growing application of engineering techniques to biology. Areas such as Systems Biology or, more recently, Synthetic Biology, get more and more attention from the engineers. ...[+]


[ES] Durante la ultima década hemos vivido una creciente aplicación de técnicas propias de las ingenierías a la biología. Áreas como la Biología de Sistemas o, más recientemente, la Biología Sintética, reciben una atención ...[+]
Subjects: Stochastic systems , Differential equations , Modeling of continuous systems , Model reduction , Simulation , Noise , Biological and biotechnological systems and bioprocesses , Sistemas estocásticos , Ecuaciones diferenciales , Modelado de sistemas continuos , Reducción de modelos , Simulación de sistemas , Ruido , Sistemas biológicos , Biotecnológicos y bioprocesos
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.1016/j.riai.2015.06.001
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.1016/j.riai.2015.06.001
Project ID:
FEDER-CICYT/DPI2011-28112-C04-01
FEDER-CICYT/DPI2014-55276-C5-1
UPV/FPI/2013-3242
Thanks:
Este trabajo ha sido realizado parcialmente gracias al apoyo de los proyectos FEDER-CICYT DPI2011-28112-C04-01, y DPI2014-55276-C5-1. Yadira Boada agradece la beca FPI/2013- 3242 de la Universitat Politècnica de València.[+]
Type: Otros

References

Arpino, J.A. J., Hancock, E.J., Anderson, J., Barahona, M., Stan, G.-B. V. B., Papachristodoulou, A., Polizzi, K., 7 2013. Tuning the dials of synthetic biology. Microbiology 159 (Pt 7), 1236-53.

Blanchini, F., & Franco, E. (2011). Structurally robust biological networks. BMC Systems Biology, 5(1), 74. doi:10.1186/1752-0509-5-74

Boada, Y., Vignoni, A., Navarro, J.L., Picó, J., 2015. Improvement of a cle stochastic simulation of gene synthetic network with quorum sensing and feedback in a cell population. In: Proceedings ECC 15. [+]
Arpino, J.A. J., Hancock, E.J., Anderson, J., Barahona, M., Stan, G.-B. V. B., Papachristodoulou, A., Polizzi, K., 7 2013. Tuning the dials of synthetic biology. Microbiology 159 (Pt 7), 1236-53.

Blanchini, F., & Franco, E. (2011). Structurally robust biological networks. BMC Systems Biology, 5(1), 74. doi:10.1186/1752-0509-5-74

Boada, Y., Vignoni, A., Navarro, J.L., Picó, J., 2015. Improvement of a cle stochastic simulation of gene synthetic network with quorum sensing and feedback in a cell population. In: Proceedings ECC 15.

Chakrabarti, A., Miskovic, L., Soh, K. C., & Hatzimanikatis, V. (2013). Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints. Biotechnology Journal, 8(9), 1043-1057. doi:10.1002/biot.201300091

Chellaboina, V., Bhat, S., Haddad, W., Bernstein, D., 8 2009. Modeling and analysis of mass-action kinetics. IEEE Control Systems Magazine 29 (4), 60-78.

Chen, W. W., Niepel, M., & Sorger, P. K. (2010). Classic and contemporary approaches to modeling biochemical reactions. Genes & Development, 24(17), 1861-1875. doi:10.1101/gad.1945410

Church, G.M., Elowitz, M.B., Smolke, C.D., Voigt, C.A., Weiss, R., 4 2014. Realizing the potential of synthetic biology. Nat Rev Mol Cell Biol 15 (4), 289-94.

De Lorenzo, V., 8 2014. Biología sintética: la ingeniería al asalto de la complejidad biológica. Arbor 190 (768), a149.

Del Vecchio, D. (2013). A control theoretic framework for modular analysis and design of biomolecular networks. Annual Reviews in Control, 37(2), 333-345. doi:10.1016/j.arcontrol.2013.09.011

ERASynBio, 2014. Next steps for european synthetic biology: a strategic vision. Tech. rep., ERASynBio. URL: https://www.erasynbio.eu.

Gillespie, D. T. (2007). Stochastic Simulation of Chemical Kinetics. Annual Review of Physical Chemistry, 58(1), 35-55. doi:10.1146/annurev.physchem.58.032806.104637

Higham, D.J., 1 2008. Modeling and simulating chemical reactions. SIAM Review 50 (2), 347-368.

Khalil, H.K., 2011. The Control Handbook. CRC Press, Ch. Two Timescale and Averaging Methods.

Kiparissides, A., Koutinas, M., Kontoravdi, C., Mantalaris, A., & Pistikopoulos, E. N. (2011). ‘Closing the loop’ in biological systems modeling — From the in silico to the in vitro. Automatica, 47(6), 1147-1155. doi:10.1016/j.automatica.2011.01.013

Kwok, R. (2010). Five hard truths for synthetic biology. Nature, 463(7279), 288-290. doi:10.1038/463288a

Llaneras, F., Picó, J., 1 2008. Stoichiometric modelling of cell metabolism. J Biosci Bioeng 105 (1), 1-11.

Mélykúti, B., Hespanha, J. P., & Khammash, M. (2014). Equilibrium distributions of simple biochemical reaction systems for time-scale separation in stochastic reaction networks. Journal of The Royal Society Interface, 11(97), 20140054. doi:10.1098/rsif.2014.0054

Milo, R., Jorgensen, P., Moran, U., Weber, G., Springer, M., 1 2010. Bionumbers-the database of key numbers in molecular and cell biology. Nucleic Acids Res 38 (Database issue), D750-3.

Munsky, B., Khammash, M., 2008. The finite state projection approach for the analysis of stochastic noise in gene networks. Automatic Control, IEEE Transactions on 53 (Special Issue), 201-214.

Differential algebra for control systems design: Constructive computation of canonical forms. (2013). IEEE Control Systems, 33(2), 52-62. doi:10.1109/mcs.2012.2234965

Scott, M., Hwa, T., Ingalls, B., 5 2007. Deterministic characterization of stochastic genetic circuits. Proc Natl Acad Sci U S A 104 (18), 7402-7.

Scott, M., Ingalls, B., Kaern, M., 6 2006. Estimations of intrinsic and extrinsic noise in models of nonlinear genetic networks. Chaos 16 (2), 026107.

Sundararaj, S., Guo, A., Habibi-Nazhad, B., Rouani, M., Stothard, P., Ellison, M., Wishart, D.S., 1 2004. The cybercell database (ccdb): a comprehensive, self-updating, relational database to coordinate and facilitate in silico modeling of escherichia coli. Nucleic Acids Res 32 (Database issue), D293-5.

Villaverde, A. F., & Banga, J. R. (2014). Reverse engineering and identification in systems biology: strategies, perspectives and challenges. Journal of The Royal Society Interface, 11(91), 20130505. doi:10.1098/rsif.2013.0505

Wallace, E. W. J., Petzold, L. R., Gillespie, D. T., & Sanft, K. R. (2012). Linear noise approximation is valid over limited times for any chemical system that is sufficiently large. IET Systems Biology, 6(4), 102-115. doi:10.1049/iet-syb.2011.0038

Zagaris, A., Kaper, H.G., Kaper, T.J., 1 2004. Analysis of the computational singular perturbation reduction method for chemical kinetics. Journal of Nonlinear Science 14 (1), 59-91.

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record