- -

Control Libre de Modelo basado en Modos Deslizantes Integrales para Robots Submarinos Subactuados

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Control Libre de Modelo basado en Modos Deslizantes Integrales para Robots Submarinos Subactuados

Show simple item record

Files in this item

dc.contributor.author Raygosa Barahona, R. es_ES
dc.contributor.author Olguín Díaz, E. es_ES
dc.contributor.author Parra Vega, V. es_ES
dc.contributor.author Muñoz Ubando, L.A. es_ES
dc.date.accessioned 2020-05-19T06:42:21Z
dc.date.available 2020-05-19T06:42:21Z
dc.date.issued 2015-07-10 es_ES
dc.identifier.issn 1697-7912 es_ES
dc.identifier.uri http://hdl.handle.net/10251/143654
dc.description.abstract [EN] A combination of a model-free control law at the dynamic level and a guidance law at the kinematic level is proposed for the tracking of an underactuated underwater robot vehicle. The closed-loop system gives rise to chattering-free integral sliding modes for local exponential tracking of actuated coordinates, while ensuring a global stable internal dynamics under certain conditions easy to meet in practice. The design methodology relies on a careful manipulation of the quasi-lagrangian model of the underwater vehicle with a control law that is independent of dynamic model and its parameters assuming full access to the state. Comparative simulations versus a PID show the feasibility and robust behavior under parametric and model uncertainties. es_ES
dc.description.abstract [ES] Se propone la combinación de una ley de control libre de modelo dinámico, en conjunto con una ley de guiado cinemático, para el seguimiento de trayectorias actuadas de un vehículo robo‘tico submarino subactuado. El sistema en lazo cerrado da lugar a modos deslizantes integrales, libres de castañeo, que garantizan la estabilidad exponencial local del seguimiento de las coordenadas actuadas con dinámica interna estable, bajo condiciones fáciles de encontrar en la práctica. La metodología del diseño se basa en una manipulación cuidadosa del modelo cuasilagrangiano de vehículos submarinos y de una ley de control que es independiente del modelo y sus parámetros, asumiendo acceso total del estado. Simulaciones comparativas considerando el PID convencional ilustran la factibilidad del control en las condiciones establecidas ante incertidumbres paramétricas y del modelo. es_ES
dc.description.sponsorship Proyecto realizado parcialmente con financiamiento de los contratos #133346, #174597 y #21969 de CONACyT de México
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation CONACYT/#133346
dc.relation CONACYT/#174597
dc.relation CONACYT/#21969
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Model-Free Control es_ES
dc.subject Integral Sliding Mode Control es_ES
dc.subject Underactuated Systems es_ES
dc.subject Underwater Vehicles es_ES
dc.subject Control Libre de Modelo es_ES
dc.subject Modos Deslizantes Integrales es_ES
dc.subject Sistemas Subactuados es_ES
dc.subject Vehículo Submarino es_ES
dc.title Control Libre de Modelo basado en Modos Deslizantes Integrales para Robots Submarinos Subactuados es_ES
dc.title.alternative Model Free Control Based on Integral Sliding Modes for Underactuated Underwater Robots. es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.riai.2015.04.004 es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Raygosa Barahona, R.; Olguín Díaz, E.; Parra Vega, V.; Muñoz Ubando, L. (2015). Control Libre de Modelo basado en Modos Deslizantes Integrales para Robots Submarinos Subactuados. Revista Iberoamericana de Automática e Informática industrial. 12(3):313-324. https://doi.org/10.1016/j.riai.2015.04.004 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.riai.2015.04.004 es_ES
dc.description.upvformatpinicio 313 es_ES
dc.description.upvformatpfin 324 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 1697-7920 es_ES
dc.relation.pasarela OJS\9365 es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México
dc.relation.references Antoneilli, G., 2006. Underwater Robots. Springer. es_ES
dc.relation.references Blanke, M., Lindegaard, K.P., Fossen, T.I., 2000. Dynamic model for thrust generation of marine propellers. presented at the Proc. IFAC Conf. Manoeuvreing of Marine Craft. Aalborg Denamark, Aug. 2000, pp. 23-25. es_ES
dc.relation.references Breivik, M., Fossen, T., 2009. Guidance laws for autonomous underwater vehicles. In: In Intelligent Underwater Vehicles. I-Tech Education and Publishing (A. V. Inzartsev, Ed.), Vienna. es_ES
dc.relation.references Brogliato, B., Lozano, R., Maschke, B., Egeland, O., 2007. Dissipative systems analysis and control: theory and applications, 2nd Edition. es_ES
dc.relation.references Byrnes, C., Isidori, A., October 1991. Asymptotic stabilization of minimum phase nonlinear systems. IEEE Tansactions on Automatic Control 36 (10). es_ES
dc.relation.references Chin, C., Lau, M., Low, E., Set, G., 2006. Software for modelling and simulation of a remotely-operated vehicle. Int. J. Simul. Model 5 (3), 114-125. es_ES
dc.relation.references Chun Nan, Tong Ge, 2012. Model-free high order sliding controller for under-water vehicle with transient process. Advanced Materials Research 591-593. es_ES
dc.relation.references Fossen, T., 2011. Handbook of marine craft hydrodynamics and motion control. John Wiley and Sons LTD, Institut for teknisk kybernetikk NTNU. es_ES
dc.relation.references Healey, A., Leanard, D., July 1993. Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE Journal of Oceanic Engineering, Vol. 18, No. 3, July 18 (3). es_ES
dc.relation.references Krstic, M., Kanellakopoulos, I., Kokotovich, P., 1995. Nonlinear and Adaptive Control Design. John Wiley and Sons. es_ES
dc.relation.references Leonard, N., 1997. Stability of a bottom-heavy underwater vehicle. Automatica 33 (3), 331-346. es_ES
dc.relation.references Meirovich, L., 2003. Methods of Analytical Dynamics. Dover Publications, New York. es_ES
dc.relation.references Olfati-Saber, R., February 2000. Nonlinear control of underactuated mechanical systems with applications to robotics and aerospace vehicles. Ph.D. thesis, M.I.T., Massachusetts. es_ES
dc.relation.references Olguín-Díaz, E., Arechavaleta, G., Jarquin, G., Parra-Vega, V., December 2013. A passivity-based model-free force–motion control of underwater vehicle-manipulator systems. IEEE Transactions on Robotics 29 (6), 1469-1484. es_ES
dc.relation.references Olguín-Díaz, E., Parra-Vega, V., 2007. On the force/posture control of a constrained submarine robot. In: 4th International Conference on Informatics in Control, Robotics and Automation, Conference Prodeedings. es_ES
dc.relation.references Parra-Vega, V., Arimoto, S., Li, Y.-H., Hirzinger, G., Akella, P., December 2003. Dynamic sliding pid control for tracking of robot manipulators. IEEE Transactions on Robotic and Automation 19 (6), 967-976. es_ES
dc.relation.references Perrier, M., Canudas de Wit, C., 1996. Experimental comparison of pid vs. pid plus nonlinear controller for subsea robots. In: Autonomous Robots. pp. 195-212. es_ES
dc.relation.references Raygosa-Barahona, R., Parra-Vega, V., Olguín-Díaz, E., Munoz-Ubando, A., October 2011. A model-free backstepping with integral sliding mode control for underactuated rovs. In: Electrical Engineering Computing Science and Automatic Control (CCE), 8th International Conference on. pp. 1-7. es_ES
dc.relation.references Sagatun, S., Fossen, T., 1991. Lagrangian formulation of underwater vehicles dynamics. In: Proceedings on International Conference on Systems, Man, and Cybernetics, IEEE. Noruega. es_ES
dc.relation.references Smallwood, D.A., Whitcomb, L.L., 2001. Preliminary experiments in the adaptive identification of dynamically positioned underwater robotic vehicles. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 1803-1810. es_ES
dc.relation.references Smallwood, D.A., Whitcomb, L.L., 2004. Model-based dynamic positioning of underwater robotic vehicles: Theory and experiment. IEEE Journal of Oceanic Engineering 29, 1. es_ES
dc.relation.references Spong, M., 1994. Partial feedback linearization of underactuated mechanical systems. In: Intelligent Robots and Systems’94’Advanced Robotic Systems and the Real World’, IROS’94. Vol. 1. pp. 314-321 vol.1. es_ES
dc.relation.references Tedrake, R., March 2010. Underactuated Robotics. MIT Press. es_ES
dc.relation.references García-Valdovinos, L.G., Salgado, T., Torres, H., 2009. Model-free high order sliding mode control for rov: Station-keeping approach. In: Proceedings of the MTS/IEEE Oceans, pp. 1-7. es_ES
dc.relation.references Whitcomb, L., Stephen, M., 2013. Preliminary experiments in fully actuated model based control with six degree-of-freedom coupled dynamic plant models for underwater vehicles. In: Proceedings of the IEEE International Conference on Robotics and Automation. es_ES
dc.relation.references Yoerger, D., Slotine, J., 1991. Adaptive sliding control of an experimental underwater vehicle. In: Proceedings of the IEEE International Conference on Robotics and Automation. es_ES


This item appears in the following Collection(s)

Show simple item record