- -

Prototipo de una plataforma móvil de bajo coste para simulación de vuelo de alto realismo

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Prototipo de una plataforma móvil de bajo coste para simulación de vuelo de alto realismo

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ortega, J.J. es_ES
dc.contributor.author Sigut, M. es_ES
dc.date.accessioned 2020-05-19T06:51:08Z
dc.date.available 2020-05-19T06:51:08Z
dc.date.issued 2016-07-10
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/143658
dc.description.abstract [ES] En este artículo se presenta un prototipo de plataforma móvil para simulación de vuelo de alto realismo. La parte central de este prototipo, que hemos denominado Albatros, es la maqueta hecha a mano. Esta maqueta es una réplica a escala de la plataforma a tamaño real que los autores pretenden construir en un futuro próximo. La maqueta está basada en la plataforma Stewart-Gough, y se ha equipado con actuadores neumáticos y potenciómetros magnéticos como sensores de posición. La plataforma móvil recibe la información de vuelo proveniente de un simulador de vuelo comercial en forma de la posición de referencia para los seis actuadores. Así, la plataforma móvil puede seguir los movimientos del avión simulado gracias a la implementación de seis controladores proporcionales-integrales. La interfaz entre el ordenador de simulación y la maqueta es una placa Arduino Mega. La simulación de vuelo de alto realismo se ha pretendido alcanzar gracias, por un lado, a un seguimiento lo más fiel posible de la consignas generadas por el software de simulación de vuelo y, por otro, a un retardo entre los movimientos del avión simulado y la maqueta tan pequeño como sea posible. es_ES
dc.description.abstract [EN] A low-cost mobile prototype for high-realism flight simulation is presented in this article. The most relevant part of this prototype that has been called Albatros is the hand-made mobile platform. The authors have the intention of constructing a real-size prototype based on the mock-up described here. This mock-up is based on a Stewart Gough platform and equipped with pneumatic actuators and magnetic potentiometers as position sensors. The mobile platform receives the flight information coming from a commercial flight simulator in the form of the reference position for the six actuators. Thus, the mobile platform can track the simulated aircraft movements thanks to the implementation of six proportional-integral controllers. An Arduino Mega circuit board is the interface between the computer and the mock-up. The high-realism flight simulation is achieved by means of the prototype motion and the short delay measured between the simulated aircraft movements and the platform ones. es_ES
dc.language Español es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Flight simulation es_ES
dc.subject Arduino es_ES
dc.subject PID control es_ES
dc.subject Low-cost es_ES
dc.subject High-realish es_ES
dc.subject Multiplatform system es_ES
dc.subject Simulación de vuelo es_ES
dc.subject Control PID es_ES
dc.subject Bajo coste es_ES
dc.subject Alto realismo es_ES
dc.subject Sistema multiplataforma es_ES
dc.title Prototipo de una plataforma móvil de bajo coste para simulación de vuelo de alto realismo es_ES
dc.title.alternative A low-cost mobile prototype for high-realism flight simulation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.riai.2016.05.002
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Ortega, J.; Sigut, M. (2016). Prototipo de una plataforma móvil de bajo coste para simulación de vuelo de alto realismo. Revista Iberoamericana de Automática e Informática industrial. 13(3):293-303. https://doi.org/10.1016/j.riai.2016.05.002 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.riai.2016.05.002 es_ES
dc.description.upvformatpinicio 293 es_ES
dc.description.upvformatpfin 303 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\9271 es_ES
dc.description.references Air Line Pilots Association (ALPA), 2007. Safety Committee Statement of Position: The Need for Motion in Flight Simulation. es_ES
dc.description.references Álvarez, C., Saltaren, R., Aracil, R., García, C., 2009. Concepcion, desarrollo y avances en el control de navegación de robots submarinos paralelos: El robot Remo-I. Revista Iberoamericana de Automatica e Informatica Industrial 6(3), 92-100. es_ES
dc.description.references Ames Technology Capabilities and Facilities. 2008. VMS - Vertical Motion Simulator. Recuperado de http://www.nasa.gov/ centers/ames/research/ technology-onepagers/vms.html. es_ES
dc.description.references AMST. (2015). Desdemona - The revolution in simulation. Recuperado de http://www.amst.co.at/en/training-simulation-products/desdemona/. es_ES
dc.description.references Arai, S., Kondo, H., Goto, H., Tanaka, Y., 2012. Evaluation of motion with washout algorithm for flight simulator using tripod parallel mechanism. In Proc. of the 19th International Conference Mechatronics and Machine Vision in Practice, Auckland. es_ES
dc.description.references Bellmann, T., Heindl, J., Hellerer, M., Kuchar, R., Sharma, K., Hirzinger, G., 2011. The DLR robot motion simulator Part I: Design and setup. In Proc. of IEEE International Conference on Robotics and Automation, Shanghai. es_ES
dc.description.references Burki-Cohen, J., Go, T.H., Chung, W.W., Schroeder, J., 2004. Simulator platform motion requirements for recurrent airline pilot training and evaluation, Final Report. es_ES
dc.description.references Burki-Cohen, J., Sparko, A.L., Bellman, M., 2011. Flight simulator motion literature pertinent to airline-pilot recurrent training and evaluation. In Proc. of AIAA Modeling and Simulation Technologies Conference, Portland. es_ES
dc.description.references Bussolari, S.R., Lee, A.T., 1986. The effects of flight simulator motion on pilot performance and simulator acceptability in transport category aircraft. Massachusetts Institute of Technology/NASA Ames Research Center. es_ES
dc.description.references Caro, P.W., 1979. The relationship between flight simulator motion and training requirements. Human Factors 4, 493-501. es_ES
dc.description.references Chunping, P., Ying, L., Jianmin, L., Yongjun, G., 2012. A time varying washout approach for flight simulation hexapod motion system. In Proc. of IEEE International Conference on Computer Science and Automation Engineering, Zhangjiajie. es_ES
dc.description.references FlightSafety International. (2015). FlightSafety Simulators and Training Technology. Recuperado de http://www.flightsafety.com/ fs simulation landing.php. es_ES
dc.description.references Go, T.H., Burki-Cohen, ¨ J., Chung, W.W., Schroeder, J., Saillant, G., Jacobs, S., Longridge, T., 2003. The effects of enhanced hexapod motion on airline pilot recurrent training and evaluation. In Proc. of AIAA Modeling and Simulation Technologies Conference, Austin. es_ES
dc.description.references Grant, P.R., Yam, B., Hosman, R., Schroeder, J.A., 2006. Effect of simulator motion on pilot behavior and perception. J. Aircr. 43(6), 1914-1924. es_ES
dc.description.references Hall, J.R., 1989. The need for platform motion in modern piloted flight training simulators. In Royal Aerospace Establishment, Tech Memo FM 35, Bedford. es_ES
dc.description.references Hitaka, Y., Tanaka, Y., Ichiryu, K., 2009. Motion analysis of tripod parallel mechanism. Artif. Life and Robot. 14(4), 494-497. es_ES
dc.description.references Izaguirre, E., Hernández, L., Rubio, E., Prieto, P.J., Hernandez, ' A., 2011. Control desacoplado de plataforma neumática de 3-GDL utilizada como simulador de movimiento. Revista Iberoamericana de Automatica e Informatica Industrial 8(4), 345-356. es_ES
dc.description.references Kent, J.L., 2010. Limits on human perception, in: Psychedelic information theory. Shamanish in the age of reason. PIT Press / Supermassive, LLC, Seattle WA, pp. 37-48. es_ES
dc.description.references Levison, W.H., Junker, A.M., 1978. A model for the pilot's use of motion cues in steady-state roll-axis tracking tasks. In Proc. of AIAA Flight Simulation Technologies Conference, Arlington. es_ES
dc.description.references National Aeronautics and Space Administration. (2014). CVSRF Advanced Concepts Flight Simulator. Recuperado de http://www.aviationsystemsdivision.arc.nasa.gov/ facilities/ cvsrf/ acfs.shtml. es_ES
dc.description.references Pradipta, J., Klunder, M., Weickgenannt, M., Sawodny, O., 2013. Development of a pneumatically driven flight simulator stewart platform using motion and force control. In Proc. of International Conference on Advanced Intelligent Mechatronics, Wollongong, NSW. es_ES
dc.description.references Regional Airline Association (RAA), 2008. Government research indicates simulator motion adds training complexity - RAA Recommends Operational Testing to Validate Effectiveness of Non-Motion Platforms, Regional Airline Industry White Paper. es_ES
dc.description.references Shiga, Y., Tanaka, Y., Goto, H., Takeda, H., 2011. Design of a six degree-offreedom tripod parallel mechanism for flight simulators. Int. J. Automation Technol. 5(5), 715-721. es_ES
dc.description.references Sung-Hua, Ch., Li-Chen, F., 2011. An optimal washout filter design with fuzzy compensation for a motion platform. In Proc. of the 18th IFAC World Congress, Milano. es_ES
dc.description.references Vaden, E.A., Hall, S., 2005. The effect of simulator platform motion on pilot training transfer: A meta-analysis, Int. J. Aviat. Psychology 15(4), 375-393. es_ES
dc.description.references Van der Pal, J., 1999. The effect of simulator motion on parameter training for F-16 pilots, engineering psychology and cognitive ergonomics: transportation systems, medical ergonomics and training. Edited by D. Harris, Ashgate, Oxford, England, pp. 267-275. es_ES
dc.description.references Van Heerden, A., Lidbetter, R., Liebenberg, L., Mathews, E.H., Meyer, J.P., 2011. Development of a motion platform for an educational flight simulator. Int. J. of Mechanical Engineering Education 39(4), 306-322. es_ES
dc.description.references Woodrow, P.M., Tischler, M.B., Hagerott, S.G., Mendoza, G.E., 2013. Low cost flight-test platform to demonstrate flight dynamics concepts using frequency-domain system identification methods. In Proc. of AIAA Atmospheric Flight Mechanics Education Conference, Boston. es_ES
dc.description.references Wu, L., Sun, Y.P., 2013. Development of a low-cost flight simulation training device for research and education. In Proc. of the 2nd International Conference on Intelligent Technologies and Engineering Systems, Kaohsiung, Taiwan. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem