- -

Modelado Matemático de un Sistema de Concentración de Fondos y Desembolsos

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Modelado Matemático de un Sistema de Concentración de Fondos y Desembolsos

Show full item record

Herrera Cáceres, CA.; Ibeas, A. (2016). Modelado Matemático de un Sistema de Concentración de Fondos y Desembolsos. Revista Iberoamericana de Automática e Informática industrial. 13(3):338-349. https://doi.org/10.1016/j.riai.2015.07.008

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143665

Files in this item

Item Metadata

Title: Modelado Matemático de un Sistema de Concentración de Fondos y Desembolsos
Secondary Title: Mathematical Modeling of a Cash Concentration and Disbursements System
Author: Herrera Cáceres, Carlos Antonio Ibeas, Asier
Issued date:
Abstract:
[ES] Este trabajo presenta un modelo de simulación para un sistema de concentración de fondos y desembolsos (SCFD) visto como un sistema de gestión de inventario, basado en ecuaciones en diferencias y técnicas de ingeniería ...[+]


[EN] This paper presents a simulation model for a cash concentration and disbursements system (CCDS) seen as an inventory management system, based on difference equations and systems engineering techniques. The model assumes ...[+]
Subjects: Simulation , Cash concentration and disbursement , Inventory control , Money transfer , Z Transform , Simulación , Concentración de caja y desembolsos , Control de inventarios , Transferencia de dinero , Transformada z
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.1016/j.riai.2015.07.008
Publisher:
Universitat Politècnica de València
Publisher version: https://doi.org/10.1016/j.riai.2015.07.008
Project ID:
MINECO/DPI2013-47825-C3-1-R
Thanks:
Los autores desean agradecer al Ministerio de Economía y Competitivad su apoyo parcial a este trabajo a través del proyecto DPI2013-47825-C3-1-R
Type: Artículo

References

Albanese, C., Jackson, K., Wiberg, P., 2004. A new Fourier transform algorithm for value-at-risk. Quantitative Finance 4(3), 328-338.

Anvari, M., 1981. An application of inventory theoretical models to cash collection. Decision Sciences 12, 126-135. DOI: 10.1111/j.1540- 5915.1981.tb00067.x.

Anvari, M., 1986. Efficient scheduling of cross-border cash transfers, Financial Management 15(2), 40-49. [+]
Albanese, C., Jackson, K., Wiberg, P., 2004. A new Fourier transform algorithm for value-at-risk. Quantitative Finance 4(3), 328-338.

Anvari, M., 1981. An application of inventory theoretical models to cash collection. Decision Sciences 12, 126-135. DOI: 10.1111/j.1540- 5915.1981.tb00067.x.

Anvari, M., 1986. Efficient scheduling of cross-border cash transfers, Financial Management 15(2), 40-49.

Anvari, M., 1987. Cash transfer scheduling for concentrating noncentral receipts. Management Science 33(1), 25-38.

Anvari, M., Goyal, S. K., 1985. Optimization of the decentralized cash management problem. European Journal of Operational Research 20(2), 198-205.

Anvari, M., Mohan, N., 1980. A computerized cash concentration system. Omega-International Journal of Management Science 8(4), 459-464.

Baccarin, S., 2009. Optimal impulse control for a multidimensional cash management system with generalized cost functions. European Journal of Operational Research 196(1), 198-206.

Bar-Ilan, A., Perry, D., Stadje, W., 2004. A generalized impulse control model of cash management. Journal of Economic Dynamics & Control 28(6), 1013-1033.

Baumol, W. J., 1952. The transactions demand for cash: an inventory theoretic approach. Journal of Finance, LXVI.

Beyer, D., Sethi, S. P., 1999. The Classical Average-Cost Inventory Models of Iglehart and Veinott-Wagner Revisited. Journal of Optimization Theory and Applications 101(3), 523-555.

Boissard, J., 2012. Applications and uses of digital filters in finance. Master's thesis, Swiss Federal Institute of Technology (ETHZ).

Buser, S. A., 1986. Laplace Transforms as Present Value Rules: A Note. The Journal of Finance 41(1), 243-247.

Cagan, P., 1956. The monetary dynamics of hyperinflation. In M. Friedman (Ed.), Studies in the Quantity Theory of Money. Chicago: University of Chicago Press.

Carr, P., Madan, D., 1999. Option valuation using the fast Fourier transform. The Journal of Computational Finance 2(4), 61-73.

Carr, P., Wu, L. R., 2004. Time-changed Levy processes and option pricing. Journal of Financial Economics 71(1), 113-141.

Cerny, A., 2004. The risk of optimal, continuously rebalanced hedging strategies and its efficient evaluation via Fourier transform. London: Tanaka Business School, Series: Tanaka Business School discussion papers, pp. 1-41, ISSN 1744-6783, http://ssrn.com/abstract=559417.

Cerny, A., 2006. Introduction to Fast Fourier Transform in Finance. Cass Business School Research Paper, pp. 1-29.

Cerny, A., 2009. Mathematical Techniques in Finance: Tools for Incomplete Markets (Second Edition). Princeton University Press, Princeton and Oxford, p.p. xxii + 390.

Cerqueti, R., 2012. Financing policies via stochastic control: a dynamic programming approach. Journal of Global Optimization 53(3), 539-561.

Chourdakis, K., 2005. Option pricing using the fractional FFT. The Journal of Computational Finance 8(2), 1-18.

Christev, A., 2005. The hyperinflation model of money demand: Some new empirical evidence from the 1990s. Centre for Economic Reform and Transformation, pp. 1-34.

Cui, X. Y., Gong, L. T., Zhao, X. J., Zou, H. F., 2013. The Z-transform method for multidimensional dynamic economic systems. Applied Economics Letters 20(11), 1081-1088.

Dempster, M. A. H., Hong, S. S. G., 2002. Spread option valuation and the fast Fourier transform. Mathematical Finance - Bachelier Congress 2000, Springer Finance, pp. 203-220.

Dennis, S. B., 2009. Matrix mathematics: Theory, facts and formulas (Second Edition). Princeton University Press, Princeton, NJ, p.p. xlii+1139.

Duffy, D. J., 2006. Finite difference methods in financial engineering: A Partial differential equation approach. John Wiley & Sons, Ltd, 442 pages, ISBN: 978-0-470-85882-0.

Eppen, G. D., Fama, E. F., 1968. Solutions for cash-balance and simple dynamic-portfolio problems. Journal of Business 41(1), 94-112.

Eppen, G. D., Fama E. F., 1969. Cash balance and simple dynamic portfolio problems with proportional costs. International Economic Review 10(2), 119-133.

Fusai, G., Roncoroni, A., 2008. Implementing models in quantitative finance: Methods and cases. Springer, Series: Springer Finance, p.p. xxiii + 607.

Fusai, G., Marazzina, D., Marena, M., Ng, M., 2012. Z-transform and preconditioning techniques for option pricing. Quantitative Finance 12(9), 1381-1394.

García, C. A., Ibeas, A., Herrera, J., Vilanova, R., 2012. Inventory control for the supply chain: An adaptive control approach based on the identification of the lead-time. Omega-International Journal of Management Science 40(3), 314-327.

García Salcedo, C. A., Ibeas Hernández, A., Vilanova, R., Herrera Cuartas, J., 2013. Inventory control of supply chains: Mitigating the bullwhip effect by centralized and decentralized Internal Model Control approaches. European Journal of Operational Research 224(2), 261-272.

Girgis, N. M., 1968. Optimal cash balance levels. Management Science 15(3), 130-140.

Grubbstrom, R. W., 1998. A net present value approach to safety stocks in planned production. International Journal of Production Economics 56(7), 213-229.

Grubbstrom, R. W., Tang, O., 1999. Further developments on safety stocks in an MRP system applying Laplace transforms and input-output analysis. International Journal of Production Economics 60(1), 381-387.

Grubbstrom, R. W., Huynh, T. T. T., 2006. Multi-level, multi-stage capacityconstrained production-inventory systems in discrete time with non-zero lead times using MRP theory. International Journal of Production Economics 101(1), 53-62.

Grubbstrom, R. W., 1999. A net present value approach to safety stocks in a multi-level MRP system. International Journal of Production Economics 59(1-3), 361-375.

Gupta, S., Dutta, K., 2011. Modeling of financial supply chain. European Journal of Operational Research 211(1), 47-56.

Hurd, T. R., Zhou, Z. W., 2010. A Fourier transform method for spread option pricing. SIAM Journal on Financial Mathematics 1(1), 142-157.

Khan, M., 1975. The monetary dynamics of hyperinflation: A note. Journal of Monetary Economics 1(3), 355-362.

Lee, R. W., 2004. Option pricing by transform methods: extensions, unification and error control. The Journal of Computational Finance 7(3), 51-86.

Liang, Z. X., Sun, B., 2011. Optimal control of a big financial company with debt liability under bankrupt probability constraints. Frontiers of Mathematics in China 6(6), 1095-1130.

Lin, P. H., Wong, D. S. H., Jang, S. S., Shieh, S. S., Chu, J. Z., 2004. Controller design and reduction of bullwhip for a model supply chain system using Z-transform analysis. Journal of Process Control 14(5), 487- 499.

Marquis, M. H., Witte, W. E., 1989. Cash management and the demand for money by firms. Journal of Macroeconomics 11(3), 333-350.

Miller, M. H., Orr, D., 1966. A Model of the demand for money by firms. The Quarterly Journal of Economics (Published by: Oxford University Press) 80(3), 413-435.

Miller, M. H., Orr, D., 1968. Demand for money by firms - extensions of analytic results. Journal of Finance 23(5), 735-759.

Naim, M. M., Wikner, J., Grubbstrom, R. W., 2007. A net present value assessment of make-to-order and make-to-stock manufacturing systems. Omega-International Journal of Management Science 35(5), 524-532.

Obstfeld, M., Rogoff, K., 1995. Exchange-rate dynamics Redux. Journal of Political Economy 103(3), 624-660.

Obstfeld, M., Rogoff, K., 1996. Foundations of international macroeconomics. The MIT Press, p.p. xxiii + 804.

Ogata, K., 1996. Discrete time control systems. Prentice-Hall International.

Premachandra, I. M., 2004. A diffusion approximation model for managing cash in firms: An alternative approach to the Miller-Orr model. European Journal of Operational Research 157(1), 218-226.

Sethi, S. P., Thompson, G. L., 1970. Applications of mathematical control theory to finance - modeling simple dynamic cash balance problems. Journal of Financial and Quantitative Analysis 5(4-5), 381-394.

Song, N., Ching, W. K., Su, T. K., Yiu, C. K. F., 2013. On optimal cash management under a Stochastic Volatility Model. East Asian Journal on Applied Mathematics 3(2), 81-92.

Stone, B. K., Hill, N. C., 1980. Cash transfer scheduling for efficient cash concentration. Financial Management 9(3), 35-43.

Stone, B. K., Hill, N. C., 1981. The design of a cash concentration system. Journal of Financial and Quantitative Analysis 16(3), 301-322.

Tenorio, V. A. F., Martín C. A. M., Paralera, M. C., Contreras R. I., 2013. Ecuaciones diferenciales y en diferencias aplicadas a los conceptos económicos y financieros. Revista de Métodos Cuantitativos para la Economía y la Empresa (16), 165-199. ISSN: 1886-516X. D.L: SE-2927- 06. URL: http://www.upo.es/RevMetCuant/art.php?id=83.

Tobin, J., 1956. The interest-elasticity of transactions demand for cash. Review of Economics and Statistics 38(3), 241-247.

Vasconcellos, G. M., 1988. On the application of optimal-control theory to financial-planning and forecasting. Journal of Economics and Business 40(4), 309-318.

Woodford, M., 1998. Control of the public debt: A requirement for price stability? Debt burden and its consequences for monetary policy. IEA Conference (118), 117-154.

[-]

This item appears in the following Collection(s)

Show full item record