- -

Mediterranean Long Shelf-Life Landraces: An Untapped Genetic Resource for Tomato Improvement

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mediterranean Long Shelf-Life Landraces: An Untapped Genetic Resource for Tomato Improvement

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Conesa, Miguel A. es_ES
dc.contributor.author Fullana-Pericas, Mateu es_ES
dc.contributor.author GRANELL RICHART, ANTONIO es_ES
dc.contributor.author Galmes, Jeroni es_ES
dc.date.accessioned 2020-05-20T03:01:21Z
dc.date.available 2020-05-20T03:01:21Z
dc.date.issued 2020-01-10 es_ES
dc.identifier.uri http://hdl.handle.net/10251/143778
dc.description.abstract [EN] The Mediterranean long shelf-life (LSL) tomatoes are a group of landraces with a fruit remaining sound up to 6¿12 months after harvest. Most have been selected under semi-arid Mediterranean summer conditions with poor irrigation or rain-fed and thus, are drought tolerant. Besides the convergence in the latter traits, local selection criteria have been very variable, leading to a wide variation in fruit morphology and quality traits. The different soil characteristics and agricultural management techniques across the Mediterranean denote also a wide range of plant adaptive traits to different conditions. Despite the notorious traits for fruit quality and environment adaptation, the LSL landraces have been poorly exploited in tomato breeding programs, which rely basically on wild tomato species. In this review, we describe most of the information currently available for Mediterranean LSL landraces in order to highlight the importance of this genetic resource. We focus on the origin and diversity, the main selective traits, and the determinants of the extended fruit shelf-life and the drought tolerance. Altogether, the Mediterranean LSL landraces are a very valuable heritage to be revalued, since constitutes an alternative source to improve fruit quality and shelf-life in tomato, and to breed for more resilient cultivars under the predicted climate change conditions. es_ES
dc.description.sponsorship This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 727929 (TOMRES), No 634561 (TRADITOM) and No 679796 (TomGEM). Research has been also supported by the Spanish Ministry of Economy and Competitiveness (MINECO) project AGL2013-42364-R (TOMDRO), and the Government of the Balearic Islands grants BIA20/07, BIA07/08, BIA09/12 and AAEE56/2015. MF-P has a pre-doctoral fellowship (FPI/1929/2016) granted by the Government of the Balearic Islands. es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Plant Science es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Drought tolerance es_ES
dc.subject Extended fruit shelf-life es_ES
dc.subject Fruit quality traits es_ES
dc.subject Gas exchange es_ES
dc.subject Mediterranean landraces es_ES
dc.subject Tomato es_ES
dc.subject Yield es_ES
dc.title Mediterranean Long Shelf-Life Landraces: An Untapped Genetic Resource for Tomato Improvement es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fpls.2019.01651 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/634561/EU/Traditional tomato varieties and cultural practices: a case for agricultural diversification with impact on food security and health of European population/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2013-42364-R/ES/TOMATES PARA LA SEQUIA: NUEVOS CONOCIMIENTOS A PARTIR DE LAS VARIEDADES LOCALES Y ESPECIES SILVESTRES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/679796/EU/A holistic multi-actor approach towards the design of new tomato varieties and management practices to improve yield and quality in the face of climate change/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAIB//BIA20%2F07/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/727929/EU/A NOVEL AND INTEGRATED APPROACH TO INCREASE MULTIPLE AND COMBINED STRESS TOLERANCE IN PLANTS USING TOMATO AS A MODEL/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAIB//BIA07%2F08/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAIB//BIA09%2F12/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAIB//AAEE56%2F201/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAIB//FPI%2F1929%2F2016/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Conesa, MA.; Fullana-Pericas, M.; Granell Richart, A.; Galmes, J. (2020). Mediterranean Long Shelf-Life Landraces: An Untapped Genetic Resource for Tomato Improvement. Frontiers in Plant Science. 10:1-21. https://doi.org/10.3389/fpls.2019.01651 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fpls.2019.01651 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 21 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.identifier.eissn 1664-462X es_ES
dc.identifier.pmid 31998340 es_ES
dc.identifier.pmcid PMC6965163 es_ES
dc.relation.pasarela S\406567 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder European Commission
dc.contributor.funder Govern de les Illes Balears es_ES
dc.description.references Abenavoli, M. R., Longo, C., Lupini, A., Miller, A. J., Araniti, F., Mercati, F., … Sunseri, F. (2016). Phenotyping two tomato genotypes with different nitrogen use efficiency. Plant Physiology and Biochemistry, 107, 21-32. doi:10.1016/j.plaphy.2016.04.021 es_ES
dc.description.references Andreakis, N., Giordano, I., Pentangelo, A., Fogliano, V., Graziani, G., Monti, L. M., & Rao, R. (2004). DNA Fingerprinting and Quality Traits of Corbarino Cherry-like Tomato Landraces. Journal of Agricultural and Food Chemistry, 52(11), 3366-3371. doi:10.1021/jf049963y es_ES
dc.description.references Arah, I. K., Amaglo, H., Kumah, E. K., & Ofori, H. (2015). Preharvest and Postharvest Factors Affecting the Quality and Shelf Life of Harvested Tomatoes: A Mini Review. International Journal of Agronomy, 2015, 1-6. doi:10.1155/2015/478041 es_ES
dc.description.references Bai, Y., & Lindhout, P. (2007). Domestication and Breeding of Tomatoes: What have We Gained and What Can We Gain in the Future? Annals of Botany, 100(5), 1085-1094. doi:10.1093/aob/mcm150 es_ES
dc.description.references Baldina, S., Picarella, M. E., Troise, A. D., Pucci, A., Ruggieri, V., Ferracane, R., … Mazzucato, A. (2016). Metabolite Profiling of Italian Tomato Landraces with Different Fruit Types. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00664 es_ES
dc.description.references Bargel, H., & Neinhuis, C. (2004). Altered Tomato (Lycopersicon esculentum Mill.) Fruit Cuticle Biomechanics of a Pleiotropic Non Ripening Mutant. Journal of Plant Growth Regulation, 23(2), 61-75. doi:10.1007/s00344-004-0036-0 es_ES
dc.description.references Bargel, H. (2005). Tomato (Lycopersicon esculentum Mill.) fruit growth and ripening as related to the biomechanical properties of fruit skin and isolated cuticle. Journal of Experimental Botany, 56(413), 1049-1060. doi:10.1093/jxb/eri098 es_ES
dc.description.references Barry, C. S., & Giovannoni, J. J. (2007). Ethylene and Fruit Ripening. Journal of Plant Growth Regulation, 26(2), 143-159. doi:10.1007/s00344-007-9002-y es_ES
dc.description.references Benites, F. R. G., Maluf, W. R., Paiva, L. V., Faria, M. V., Andrade Junior, V. C., & Gonçalves, L. D. (2010). Teste de alelismo entre os mutantes de amadurecimento alcobaça e non-ripening em tomateiro. Ciência e Agrotecnologia, 34(spe), 1669-1673. doi:10.1590/s1413-70542010000700014 es_ES
dc.description.references Berni, R., Cantini, C., Romi, M., Hausman, J.-F., Guerriero, G., & Cai, G. (2018). Agrobiotechnology Goes Wild: Ancient Local Varieties as Sources of Bioactives. International Journal of Molecular Sciences, 19(8), 2248. doi:10.3390/ijms19082248 es_ES
dc.description.references Blanca, J., Montero-Pau, J., Sauvage, C., Bauchet, G., Illa, E., Díez, M. J., … Cañizares, J. (2015). Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics, 16(1). doi:10.1186/s12864-015-1444-1 es_ES
dc.description.references Bota, J., Conesa, M. À., Ochogavia, J. M., Medrano, H., Francis, D. M., & Cifre, J. (2014). Characterization of a landrace collection for Tomàtiga de Ramellet (Solanum lycopersicum L.) from the Balearic Islands. Genetic Resources and Crop Evolution, 61(6), 1131-1146. doi:10.1007/s10722-014-0096-3 es_ES
dc.description.references Brewer, M. T., Lang, L., Fujimura, K., Dujmovic, N., Gray, S., & van der Knaap, E. (2006). Development of a Controlled Vocabulary and Software Application to Analyze Fruit Shape Variation in Tomato and Other Plant Species. Plant Physiology, 141(1), 15-25. doi:10.1104/pp.106.077867 es_ES
dc.description.references Brodribb, T. J., & Holbrook, N. M. (2003). Stomatal Closure during Leaf Dehydration, Correlation with Other Leaf Physiological Traits. Plant Physiology, 132(4), 2166-2173. doi:10.1104/pp.103.023879 es_ES
dc.description.references Brodribb, T. J., Feild, T. S., & Jordan, G. J. (2007). Leaf Maximum Photosynthetic Rate and Venation Are Linked by Hydraulics. Plant Physiology, 144(4), 1890-1898. doi:10.1104/pp.107.101352 es_ES
dc.description.references Brodribb, T. J., Feild, T. S., & Sack, L. (2010). Viewing leaf structure and evolution from a hydraulic perspective. Functional Plant Biology, 37(6), 488. doi:10.1071/fp10010 es_ES
dc.description.references Brugarolas, M., Martínez-Carrasco, L., Martínez-Poveda, A., & Ruiz-Martínez, J. J. (2009). A competitive strategy for vegetable products: traditional varieties of tomato in the local market. Spanish Journal of Agricultural Research, 7(2), 294. doi:10.5424/sjar/2009072-420 es_ES
dc.description.references Villa, T. C. C., Maxted, N., Scholten, M., & Ford-Lloyd, B. (2005). Defining and identifying crop landraces. Plant Genetic Resources, 3(3), 373-384. doi:10.1079/pgr200591 es_ES
dc.description.references Casa, R., & Rouphael, Y. (2014). Effects of partial root-zone drying irrigation on yield, fruit quality, and water-use efficiency in processing tomato. The Journal of Horticultural Science and Biotechnology, 89(4), 389-396. doi:10.1080/14620316.2014.11513097 es_ES
dc.description.references Casañas, F., Simó, J., Casals, J., & Prohens, J. (2017). Toward an Evolved Concept of Landrace. Frontiers in Plant Science, 08. doi:10.3389/fpls.2017.00145 es_ES
dc.description.references Casals, J., Cebolla-Cornejo, J., Roselló, S., Beltrán, J., Casañas, F., & Nuez, F. (2011). Long-term postharvest aroma evolution of tomatoes with the alcobaça (alc) mutation. European Food Research and Technology, 233(2), 331-342. doi:10.1007/s00217-011-1517-6 es_ES
dc.description.references Casals, J., Pascual, L., Cañizares, J., Cebolla-Cornejo, J., Casañas, F., & Nuez, F. (2011). Genetic basis of long shelf life and variability into Penjar tomato. Genetic Resources and Crop Evolution, 59(2), 219-229. doi:10.1007/s10722-011-9677-6 es_ES
dc.description.references Missio, J. C., Renau, R. M., Artigas, F. C., & Cornejo, J. C. (2015). Sugar-and-acid profile of Penjar tomatoes and its evolution during storage. Scientia Agricola, 72(4), 314-321. doi:10.1590/0103-9016-2014-0311 es_ES
dc.description.references Causse, M., Friguet, C., Coiret, C., Lépicier, M., Navez, B., Lee, M., … Grandillo, S. (2010). Consumer Preferences for Fresh Tomato at the European Scale: A Common Segmentation on Taste and Firmness. Journal of Food Science, 75(9), S531-S541. doi:10.1111/j.1750-3841.2010.01841.x es_ES
dc.description.references Cebolla-Cornejo, J., Roselló, S., & Nuez, F. (2013). Phenotypic and genetic diversity of Spanish tomato landraces. Scientia Horticulturae, 162, 150-164. doi:10.1016/j.scienta.2013.07.044 es_ES
dc.description.references Condon, A., Farquhar, G., & Richards, R. (1990). Genotypic Variation in Carbon Isotope Discrimination and Transpiration Efficiency in Wheat. Leaf Gas Exchange and Whole Plant Studies. Functional Plant Biology, 17(1), 9. doi:10.1071/pp9900009 es_ES
dc.description.references Conesa, M. À., Galmés, J., Ochogavía, J. M., March, J., Jaume, J., Martorell, A., … Cifre, J. (2014). The postharvest tomato fruit quality of long shelf-life Mediterranean landraces is substantially influenced by irrigation regimes. Postharvest Biology and Technology, 93, 114-121. doi:10.1016/j.postharvbio.2014.02.014 es_ES
dc.description.references Corrado, G., Caramante, M., Piffanelli, P., & Rao, R. (2014). Genetic diversity in Italian tomato landraces: Implications for the development of a core collection. Scientia Horticulturae, 168, 138-144. doi:10.1016/j.scienta.2014.01.027 es_ES
dc.description.references Cortés-Olmos, C., Valcárcel, J. V., Roselló, J., Díez, M. J., & Cebolla-Cornejo, J. (2015). Traditional Eastern Spanish varieties of tomato. Scientia Agricola, 72(5), 420-431. doi:10.1590/0103-9016-2014-0322 es_ES
dc.description.references D’Esposito, D., Ferriello, F., Molin, A. D., Diretto, G., Sacco, A., Minio, A., … Ercolano, M. R. (2017). Unraveling the complexity of transcriptomic, metabolomic and quality environmental response of tomato fruit. BMC Plant Biology, 17(1). doi:10.1186/s12870-017-1008-4 es_ES
dc.description.references Daunay, M.-C., Laterrot, H., & Janick, J. (2007). ICONOGRAPHY OF THE SOLANACEAE FROM ANTIQUITY TO THE XVIITH CENTURY: A RICH SOURCE OF INFORMATION ON GENETIC DIVERSITY AND USES. Acta Horticulturae, (745), 59-88. doi:10.17660/actahortic.2007.745.3 es_ES
dc.description.references Dias, T. J. M., Maluf, W. R., Faria, M. V., Freitas, J. A. de, Gomes, L. A. A., Resende, J. T. V., & Azevedo, S. M. de. (2003). Alcobaça allele and genotypic backgrounds affect yield and fruit shelf life of tomato hybrids. Scientia Agricola, 60(2), 269-275. doi:10.1590/s0103-90162003000200010 es_ES
dc.description.references Domínguez, E., Cuartero, J., & Heredia, A. (2011). An overview on plant cuticle biomechanics. Plant Science, 181(2), 77-84. doi:10.1016/j.plantsci.2011.04.016 es_ES
dc.description.references Dwivedi, S. L., Ceccarelli, S., Blair, M. W., Upadhyaya, H. D., Are, A. K., & Ortiz, R. (2016). Landrace Germplasm for Improving Yield and Abiotic Stress Adaptation. Trends in Plant Science, 21(1), 31-42. doi:10.1016/j.tplants.2015.10.012 es_ES
dc.description.references Elia, A., & Santamaria, P. (2013). Biodiversity in vegetable crops, a heritage to save: the case of Puglia region. Italian Journal of Agronomy, 8(1), 4. doi:10.4081/ija.2013.e4 es_ES
dc.description.references Ercolano, M., Sacco, A., Ferriello, F., D’Alessandro, R., Tononi, P., Traini, A., … Frusciante, L. (2014). Patchwork sequencing of tomato San Marzano and Vesuviano varieties highlights genome-wide variations. BMC Genomics, 15(1), 138. doi:10.1186/1471-2164-15-138 es_ES
dc.description.references FAIRCHILD, D. (1927). THE TOMATO TERRACES OF BAÑALBUFAR. Journal of Heredity, 18(6), 245-251. doi:10.1093/oxfordjournals.jhered.a102861 es_ES
dc.description.references Farquhar, G., O’Leary, M., & Berry, J. (1982). On the Relationship Between Carbon Isotope Discrimination and the Intercellular Carbon Dioxide Concentration in Leaves. Functional Plant Biology, 9(2), 121. doi:10.1071/pp9820121 es_ES
dc.description.references Fattore, M., Montesano, D., Pagano, E., Teta, R., Borrelli, F., Mangoni, A., … Albrizio, S. (2016). Carotenoid and flavonoid profile and antioxidant activity in «Pomodorino Vesuviano» tomatoes. Journal of Food Composition and Analysis, 53, 61-68. doi:10.1016/j.jfca.2016.08.008 es_ES
dc.description.references Figàs, M. R., Prohens, J., Raigón, M. D., Fita, A., García-Martínez, M. D., Casanova, C., … Soler, S. (2015). Characterization of composition traits related to organoleptic and functional quality for the differentiation, selection and enhancement of local varieties of tomato from different cultivar groups. Food Chemistry, 187, 517-524. doi:10.1016/j.foodchem.2015.04.083 es_ES
dc.description.references Figàs, M. R., Prohens, J., Raigón, M. D., Pereira-Dias, L., Casanova, C., García-Martínez, M. D., … Soler, S. (2018). Insights Into the Adaptation to Greenhouse Cultivation of the Traditional Mediterranean Long Shelf-Life Tomato Carrying the alc Mutation: A Multi-Trait Comparison of Landraces, Selections, and Hybrids in Open Field and Greenhouse. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01774 es_ES
dc.description.references Flexas, J., Niinemets, Ü., Gallé, A., Barbour, M. M., Centritto, M., Diaz-Espejo, A., … Medrano, H. (2013). Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency. Photosynthesis Research, 117(1-3), 45-59. doi:10.1007/s11120-013-9844-z es_ES
dc.description.references Flexas, J., Scoffoni, C., Gago, J., & Sack, L. (2013). Leaf mesophyll conductance and leaf hydraulic conductance: an introduction to their measurement and coordination. Journal of Experimental Botany, 64(13), 3965-3981. doi:10.1093/jxb/ert319 es_ES
dc.description.references Foolad, M. R., & Panthee, D. R. (2012). Marker-Assisted Selection in Tomato Breeding. Critical Reviews in Plant Sciences, 31(2), 93-123. doi:10.1080/07352689.2011.616057 es_ES
dc.description.references Foolad, M. R. (2007). Genome Mapping and Molecular Breeding of Tomato. International Journal of Plant Genomics, 2007, 1-52. doi:10.1155/2007/64358 es_ES
dc.description.references Franks, P. J., & Beerling, D. J. (2009). Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proceedings of the National Academy of Sciences, 106(25), 10343-10347. doi:10.1073/pnas.0904209106 es_ES
dc.description.references Frison, E. A., Cherfas, J., & Hodgkin, T. (2011). Agricultural Biodiversity Is Essential for a Sustainable Improvement in Food and Nutrition Security. Sustainability, 3(1), 238-253. doi:10.3390/su3010238 es_ES
dc.description.references Fullana-Pericas, M., Conesa, M. A., Soler, S., Ribas-Carbo, M., Granell, A., & Galmes, J. (2017). Variations of leaf morphology, photosynthetic traits and water-use efficiency in Western-Mediterranean tomato landraces. Photosynthetica, 55(1), 121-133. doi:10.1007/s11099-016-0653-4 es_ES
dc.description.references Fullana-Pericàs, M., Conesa, M. À., Douthe, C., El Aou-ouad, H., Ribas-Carbó, M., & Galmés, J. (2019). Tomato landraces as a source to minimize yield losses and improve fruit quality under water deficit conditions. Agricultural Water Management, 223, 105722. doi:10.1016/j.agwat.2019.105722 es_ES
dc.description.references GALMÉS, J., CONESA, M. À., OCHOGAVÍA, J. M., PERDOMO, J. A., FRANCIS, D. M., RIBAS-CARBÓ, M., … CIFRE, J. (2010). Physiological and morphological adaptations in relation to water use efficiency in Mediterranean accessions of Solanum lycopersicum. Plant, Cell & Environment, 34(2), 245-260. doi:10.1111/j.1365-3040.2010.02239.x es_ES
dc.description.references GALMÉS, J., OCHOGAVÍA, J. M., GAGO, J., ROLDÁN, E. J., CIFRE, J., & CONESA, M. À. (2012). Leaf responses to drought stress in Mediterranean accessions ofSolanum lycopersicum: anatomical adaptations in relation to gas exchange parameters. Plant, Cell & Environment, 36(5), 920-935. doi:10.1111/pce.12022 es_ES
dc.description.references García-Martínez, S., Corrado, G., Ruiz, J. J., & Rao, R. (2012). Diversity and structure of a sample of traditional Italian and Spanish tomato accessions. Genetic Resources and Crop Evolution, 60(2), 789-798. doi:10.1007/s10722-012-9876-9 es_ES
dc.description.references Garcia-Mier, L., Jimenez-Garcia, S. N., Chapa-Oliver, A. M., Mejia-Teniente, L., Ocampo-Velazquez, R. V., Rico-García, E., … Torres-Pacheco, I. (2014). Strategies for Sustainable Plant Food Production: Facing the Current Agricultural Challenges—Agriculture for Today and Tomorrow. Biosystems Engineering: Biofactories for Food Production in the Century XXI, 1-50. doi:10.1007/978-3-319-03880-3_1 es_ES
dc.description.references Giorio, P., Guida, G., Mistretta, C., Sellami, M. H., Oliva, M., Punzo, P., … Albrizio, R. (2018). Physiological, biochemical and molecular responses to water stress and rehydration in Mediterranean adapted tomato landraces. Plant Biology, 20(6), 995-1004. doi:10.1111/plb.12891 es_ES
dc.description.references Giovannoni, J., Nguyen, C., Ampofo, B., Zhong, S., & Fei, Z. (2017). The Epigenome and Transcriptional Dynamics of Fruit Ripening. Annual Review of Plant Biology, 68(1), 61-84. doi:10.1146/annurev-arplant-042916-040906 es_ES
dc.description.references Giovannoni, J. J. (2007). Fruit ripening mutants yield insights into ripening control. Current Opinion in Plant Biology, 10(3), 283-289. doi:10.1016/j.pbi.2007.04.008 es_ES
dc.description.references Guida, G., Sellami, M. H., Mistretta, C., Oliva, M., Buonomo, R., De Mascellis, R., … Giorio, P. (2017). Agronomical, physiological and fruit quality responses of two Italian long-storage tomato landraces under rain-fed and full irrigation conditions. Agricultural Water Management, 180, 126-135. doi:10.1016/j.agwat.2016.11.004 es_ES
dc.description.references Kirda, C., Cetin, M., Dasgan, Y., Topcu, S., Kaman, H., Ekici, B., … Ozguven, A. I. (2004). Yield response of greenhouse grown tomato to partial root drying and conventional deficit irrigation. Agricultural Water Management, 69(3), 191-201. doi:10.1016/j.agwat.2004.04.008 es_ES
dc.description.references Klee, H. J., & Giovannoni, J. J. (2011). Genetics and Control of Tomato Fruit Ripening and Quality Attributes. Annual Review of Genetics, 45(1), 41-59. doi:10.1146/annurev-genet-110410-132507 es_ES
dc.description.references Klee, H. J., & Tieman, D. M. (2013). Genetic challenges of flavor improvement in tomato. Trends in Genetics, 29(4), 257-262. doi:10.1016/j.tig.2012.12.003 es_ES
dc.description.references KOPELIOVITCH, E., MIZRAHI, Y., RABINOWITCH, H. D., & KEDAR, N. (1980). Physiology of the tomato mutant alcobaca. Physiologia Plantarum, 48(2), 307-311. doi:10.1111/j.1399-3054.1980.tb03260.x es_ES
dc.description.references Kopeliovitch, E., Rabinowitch, H. D., Mizrahi, Y., & Kedar, N. (1981). Mode of inheritance of Alcobaca, a tomato fruit-ripening mutant. Euphytica, 30(1), 223-225. doi:10.1007/bf00033685 es_ES
dc.description.references Kosma, D. K., Parsons, E. P., Isaacson, T., Lü, S., Rose, J. K. C., & Jenks, M. A. (2010). Fruit cuticle lipid composition during development in tomato ripening mutants. Physiologia Plantarum, 139(1), 107-117. doi:10.1111/j.1399-3054.2009.01342.x es_ES
dc.description.references Koutsika-Sotiriou, M., Mylonas, I., Tsivelikas, A., & Traka-Mavrona, E. (2016). Compensation studies on the tomato landrace ‘Tomataki Santorinis’. Scientia Horticulturae, 198, 78-85. doi:10.1016/j.scienta.2015.11.006 es_ES
dc.description.references Kumar, R., Tamboli, V., Sharma, R., & Sreelakshmi, Y. (2018). NAC-NOR mutations in tomato Penjar accessions attenuate multiple metabolic processes and prolong the fruit shelf life. Food Chemistry, 259, 234-244. doi:10.1016/j.foodchem.2018.03.135 es_ES
dc.description.references Labate, J. A., & Robertson, L. D. (2012). Evidence of cryptic introgression in tomato (Solanum lycopersicum L.) based on wild tomato species alleles. BMC Plant Biology, 12(1), 133. doi:10.1186/1471-2229-12-133 es_ES
dc.description.references Landi, S., De Lillo, A., Nurcato, R., Grillo, S., & Esposito, S. (2017). In-field study on traditional Italian tomato landraces: The constitutive activation of the ROS scavenging machinery reduces effects of drought stress. Plant Physiology and Biochemistry, 118, 150-160. doi:10.1016/j.plaphy.2017.06.011 es_ES
dc.description.references Lin, T., Zhu, G., Zhang, J., Xu, X., Yu, Q., Zheng, Z., … Huang, S. (2014). Genomic analyses provide insights into the history of tomato breeding. Nature Genetics, 46(11), 1220-1226. doi:10.1038/ng.3117 es_ES
dc.description.references Lobell, D. B., & Gourdji, S. M. (2012). The Influence of Climate Change on Global Crop Productivity. Plant Physiology, 160(4), 1686-1697. doi:10.1104/pp.112.208298 es_ES
dc.description.references Maamar, B., Maatoug, M., Iriti, M., Dellal, A., & Ait hammou Mohammed. (2015). Physiological effects of ozone exposure on De Colgar and Rechaiga II tomato (Solanum lycopersicum L.) cultivars. Environmental Science and Pollution Research, 22(16), 12124-12132. doi:10.1007/s11356-015-4490-y es_ES
dc.description.references Manzo, N., Pizzolongo, F., Meca, G., Aiello, A., Marchetti, N., & Romano, R. (2018). Comparative Chemical Compositions of Fresh and Stored Vesuvian PDO «Pomodorino Del Piennolo» Tomato and the Ciliegino Variety. Molecules, 23(11), 2871. doi:10.3390/molecules23112871 es_ES
dc.description.references Mazzucato, A., Papa, R., Bitocchi, E., Mosconi, P., Nanni, L., Negri, V., … Veronesi, F. (2008). Genetic diversity, structure and marker-trait associations in a collection of Italian tomato (Solanum lycopersicum L.) landraces. Theoretical and Applied Genetics, 116(5), 657-669. doi:10.1007/s00122-007-0699-6 es_ES
dc.description.references Mercati, F., Longo, C., Poma, D., Araniti, F., Lupini, A., Mammano, M. M., … Sunseri, F. (2014). Genetic variation of an Italian long shelf-life tomato (Solanum lycopersicon L.) collection by using SSR and morphological fruit traits. Genetic Resources and Crop Evolution, 62(5), 721-732. doi:10.1007/s10722-014-0191-5 es_ES
dc.description.references Meyer, R. S., DuVal, A. E., & Jensen, H. R. (2012). Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytologist, 196(1), 29-48. doi:10.1111/j.1469-8137.2012.04253.x es_ES
dc.description.references Mirouze, M., & Paszkowski, J. (2011). Epigenetic contribution to stress adaptation in plants. Current Opinion in Plant Biology, 14(3), 267-274. doi:10.1016/j.pbi.2011.03.004 es_ES
dc.description.references Moore, S. (2002). Use of genomics tools to isolate key ripening genes and analyse fruit maturation in tomato. Journal of Experimental Botany, 53(377), 2023-2030. doi:10.1093/jxb/erf057 es_ES
dc.description.references Mutschler, M., Guttieri, M., Kinzer, S., Grierson, D., & Tucker, G. (1988). Changes in ripening-related processes in tomato conditioned by the alc mutant. Theoretical and Applied Genetics, 76(2), 285-292. doi:10.1007/bf00257857 es_ES
dc.description.references Mutschler, M. A., Wolfe, D. W., Cobb, E. D., & Yourstone, K. S. (1992). Tomato Fruit Quality and Shelf Life in Hybrids Heterozygous for the alc Ripening Mutant. HortScience, 27(4), 352-355. doi:10.21273/hortsci.27.4.352 es_ES
dc.description.references Nuccio, M. L., Paul, M., Bate, N. J., Cohn, J., & Cutler, S. R. (2018). Where are the drought tolerant crops? An assessment of more than two decades of plant biotechnology effort in crop improvement. Plant Science, 273, 110-119. doi:10.1016/j.plantsci.2018.01.020 es_ES
dc.description.references Onoda, Y., Wright, I. J., Evans, J. R., Hikosaka, K., Kitajima, K., Niinemets, Ü., … Westoby, M. (2017). Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytologist, 214(4), 1447-1463. doi:10.1111/nph.14496 es_ES
dc.description.references Osorio, S., Scossa, F., & Fernie, A. R. (2013). Molecular regulation of fruit ripening. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00198 es_ES
dc.description.references Panthee, D. R., Labate, J. A., McGrath, M. T., Breksa, A. P., & Robertson, L. D. (2013). Genotype and environmental interaction for fruit quality traits in vintage tomato varieties. Euphytica, 193(2), 169-182. doi:10.1007/s10681-013-0895-1 es_ES
dc.description.references Patanè, C., & Cosentino, S. L. (2010). Effects of soil water deficit on yield and quality of processing tomato under a Mediterranean climate. Agricultural Water Management, 97(1), 131-138. doi:10.1016/j.agwat.2009.08.021 es_ES
dc.description.references Patanè, C., Scordia, D., Testa, G., & Cosentino, S. L. (2016). Physiological screening for drought tolerance in Mediterranean long-storage tomato. Plant Science, 249, 25-34. doi:10.1016/j.plantsci.2016.05.006 es_ES
dc.description.references Patanè, C., Pellegrino, A., Saita, A., Siracusa, L., Ruberto, G., & Barbagallo, R. (2017). Mediterranean long storage tomato as a source of novel products for the agrifood industry: Nutritional and technological traits. LWT - Food Science and Technology, 85, 445-448. doi:10.1016/j.lwt.2016.12.011 es_ES
dc.description.references Pernice, R., Parisi, M., Giordano, I., Pentangelo, A., Graziani, G., Gallo, M., … Ritieni, A. (2010). Antioxidants profile of small tomato fruits: Effect of irrigation and industrial process. Scientia Horticulturae, 126(2), 156-163. doi:10.1016/j.scienta.2010.06.021 es_ES
dc.description.references Renna, M., Durante, M., Gonnella, M., Buttaro, D., D’Imperio, M., Mita, G., & Serio, F. (2018). Quality and Nutritional Evaluation of Regina Tomato, a Traditional Long-Storage Landrace of Puglia (Southern Italy). Agriculture, 8(6), 83. doi:10.3390/agriculture8060083 es_ES
dc.description.references Rockstrom, J., Lannerstad, M., & Falkenmark, M. (2007). Assessing the water challenge of a new green revolution in developing countries. Proceedings of the National Academy of Sciences, 104(15), 6253-6260. doi:10.1073/pnas.0605739104 es_ES
dc.description.references Rodríguez, G. R., Muños, S., Anderson, C., Sim, S.-C., Michel, A., Causse, M., … van der Knaap, E. (2011). Distribution of SUN, OVATE, LC, and FAS in the Tomato Germplasm and the Relationship to Fruit Shape Diversity. Plant Physiology, 156(1), 275-285. doi:10.1104/pp.110.167577 es_ES
dc.description.references Ruiz, J. J., García-Martínez, S., Picó, B., Gao, M., & Quiros, C. F. (2005). Genetic Variability and Relationship of Closely Related Spanish Traditional Cultivars of Tomato as Detected by SRAP and SSR Markers. Journal of the American Society for Horticultural Science, 130(1), 88-94. doi:10.21273/jashs.130.1.88 es_ES
dc.description.references Saladié, M., Matas, A. J., Isaacson, T., Jenks, M. A., Goodwin, S. M., Niklas, K. J., … Rose, J. K. C. (2007). A Reevaluation of the Key Factors That Influence Tomato Fruit Softening and Integrity. Plant Physiology, 144(2), 1012-1028. doi:10.1104/pp.107.097477 es_ES
dc.description.references Schmitz, R. J., Schultz, M. D., Urich, M. A., Nery, J. R., Pelizzola, M., Libiger, O., … Ecker, J. R. (2013). Patterns of population epigenomic diversity. Nature, 495(7440), 193-198. doi:10.1038/nature11968 es_ES
dc.description.references Scoffoni, C., Chatelet, D. S., Pasquet-kok, J., Rawls, M., Donoghue, M. J., Edwards, E. J., & Sack, L. (2016). Hydraulic basis for the evolution of photosynthetic productivity. Nature Plants, 2(6). doi:10.1038/nplants.2016.72 es_ES
dc.description.references Seymour, G. B., Chapman, N. H., Chew, B. L., & Rose, J. K. C. (2012). Regulation of ripening and opportunities for control in tomato and other fruits. Plant Biotechnology Journal, 11(3), 269-278. doi:10.1111/j.1467-7652.2012.00738.x es_ES
dc.description.references Sim, S.-C., Robbins, M. D., Deynze, A. V., Michel, A. P., & Francis, D. M. (2010). Population structure and genetic differentiation associated with breeding history and selection in tomato (Solanum lycopersicum L.). Heredity, 106(6), 927-935. doi:10.1038/hdy.2010.139 es_ES
dc.description.references Sim, S.-C., Van Deynze, A., Stoffel, K., Douches, D. S., Zarka, D., Ganal, M. W., … Francis, D. M. (2012). High-Density SNP Genotyping of Tomato (Solanum lycopersicum L.) Reveals Patterns of Genetic Variation Due to Breeding. PLoS ONE, 7(9), e45520. doi:10.1371/journal.pone.0045520 es_ES
dc.description.references Sims, W. L. (1980). HISTORY OF TOMATO PRODUCTION FOR INDUSTRY AROUND THE WORLD. Acta Horticulturae, (100), 25-26. doi:10.17660/actahortic.1980.100.1 es_ES
dc.description.references SINESIO, F., MONETA, E., & PEPARAIO, M. (2007). SENSORY CHARACTERISTICS OF TRADITIONAL FIELD GROWN TOMATO GENOTYPES IN SOUTHERN ITALY. Journal of Food Quality, 30(6), 878-895. doi:10.1111/j.1745-4557.2007.00161.x es_ES
dc.description.references Siracusa, L., Patanè, C., Avola, G., & Ruberto, G. (2011). Polyphenols as Chemotaxonomic Markers in Italian «Long-Storage» Tomato Genotypes. Journal of Agricultural and Food Chemistry, 60(1), 309-314. doi:10.1021/jf203858y es_ES
dc.description.references Siracusa, L., Avola, G., Patanè, C., Riggi, E., & Ruberto, G. (2013). Re-evaluation of traditional Mediterranean foods. The local landraces of ‘Cipolla di Giarratana’ (Allium cepa L.) and long-storage tomato(Lycopersicon esculentum L.): quality traits and polyphenol content. Journal of the Science of Food and Agriculture, 93(14), 3512-3519. doi:10.1002/jsfa.6199 es_ES
dc.description.references Siracusa, L., Patanè, C., Rizzo, V., Cosentino, S. L., & Ruberto, G. (2018). Targeted secondary metabolic and physico-chemical traits analysis to assess genetic variability within a germplasm collection of «long storage» tomatoes. Food Chemistry, 244, 275-283. doi:10.1016/j.foodchem.2017.10.043 es_ES
dc.description.references Sreeman, S. M., Vijayaraghavareddy, P., Sreevathsa, R., Rajendrareddy, S., Arakesh, S., Bharti, P., … Soolanayakanahally, R. (2018). Corrigendum: Introgression of Physiological Traits for a Comprehensive Improvement of Drought Adaptation in Crop Plants. Frontiers in Chemistry, 6. doi:10.3389/fchem.2018.00382 es_ES
dc.description.references Tamburino, R., Vitale, M., Ruggiero, A., Sassi, M., Sannino, L., Arena, S., … Scotti, N. (2017). Chloroplast proteome response to drought stress and recovery in tomato (Solanum lycopersicum L.). BMC Plant Biology, 17(1). doi:10.1186/s12870-017-0971-0 es_ES
dc.description.references Tardieu, F., Simonneau, T., & Muller, B. (2018). The Physiological Basis of Drought Tolerance in Crop Plants: A Scenario-Dependent Probabilistic Approach. Annual Review of Plant Biology, 69(1), 733-759. doi:10.1146/annurev-arplant-042817-040218 es_ES
dc.description.references Terzopoulos, P. J., & Bebeli, P. J. (2008). DNA and morphological diversity of selected Greek tomato (Solanum lycopersicum L.) landraces. Scientia Horticulturae, 116(4), 354-361. doi:10.1016/j.scienta.2008.02.010 es_ES
dc.description.references Terzopoulos, P. J., & Bebeli, P. J. (2010). Phenotypic diversity in Greek tomato (Solanum lycopersicum L.) landraces. Scientia Horticulturae, 126(2), 138-144. doi:10.1016/j.scienta.2010.06.022 es_ES
dc.description.references Tieman, D., Zhu, G., Resende, M. F. R., Lin, T., Nguyen, C., Bies, D., … Klee, H. (2017). A chemical genetic roadmap to improved tomato flavor. Science, 355(6323), 391-394. doi:10.1126/science.aal1556 es_ES
dc.description.references Tranchida-Lombardo, V., Aiese Cigliano, R., Anzar, I., Landi, S., Palombieri, S., Colantuono, C., … Grillo, S. (2017). Whole-genome re-sequencing of two Italian tomato landraces reveals sequence variations in genes associated with stress tolerance, fruit quality and long shelf-life traits. DNA Research, 25(2), 149-160. doi:10.1093/dnares/dsx045 es_ES
dc.description.references Tranchida-Lombardo, V., Mercati, F., Avino, M., Punzo, P., Fiore, M. C., Poma, I., … Grillo, S. (2018). Genetic diversity in a collection of Italian long storage tomato landraces as revealed by SNP markers array. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 153(2), 288-297. doi:10.1080/11263504.2018.1478900 es_ES
dc.description.references Tuberosa, R. (2012). Phenotyping for drought tolerance of crops in the genomics era. Frontiers in Physiology, 3. doi:10.3389/fphys.2012.00347 es_ES
dc.description.references Van Oosten, M. J., Bressan, R. A., Zhu, J.-K., Bohnert, H. J., & Chinnusamy, V. (2014). The Role of the Epigenome in Gene Expression Control and the Epimark Changes in Response to the Environment. Critical Reviews in Plant Sciences, 33(1), 64-87. doi:10.1080/07352689.2014.852920 es_ES
dc.description.references Vrebalov, J. (2002). A MADS-Box Gene Necessary for Fruit Ripening at the Tomato Ripening-Inhibitor (Rin) Locus. Science, 296(5566), 343-346. doi:10.1126/science.1068181 es_ES
dc.description.references Wang, N., Liu, D., Tanase, K., Shikata, M., Chen, H., Pankasem, N., … Ezura, H. (2018). Diversification of NOR-like genes resulted in functional similarity in tomato. Plant Growth Regulation, 86(2), 297-309. doi:10.1007/s10725-018-0429-x es_ES
dc.description.references Ximénez-Embún, M. G., González-Guzmán, M., Arbona, V., Gómez-Cadenas, A., Ortego, F., & Castañera, P. (2018). Plant-Mediated Effects of Water Deficit on the Performance of Tetranychus evansi on Tomato Drought-Adapted Accessions. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01490 es_ES
dc.description.references Yu, Q., Wang, B., Li, N., Tang, Y., Yang, S., Yang, T., … Asmutola, P. (2017). CRISPR/Cas9-induced Targeted Mutagenesis and Gene Replacement to Generate Long-shelf Life Tomato Lines. Scientific Reports, 7(1). doi:10.1038/s41598-017-12262-1 es_ES
dc.description.references Zanor, M. I., Rambla, J.-L., Chaïb, J., Steppa, A., Medina, A., Granell, A., … Causse, M. (2009). Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. Journal of Experimental Botany, 60(7), 2139-2154. doi:10.1093/jxb/erp086 es_ES
dc.description.references Zeven, A. C. (1998). Euphytica, 104(2), 127-139. doi:10.1023/a:1018683119237 es_ES
dc.description.references Zhong, S., Fei, Z., Chen, Y.-R., Zheng, Y., Huang, M., Vrebalov, J., … Giovannoni, J. J. (2013). Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nature Biotechnology, 31(2), 154-159. doi:10.1038/nbt.2462 es_ES
dc.description.references Zohary, D. (2004). Unconscious Selection and the Evolution of Domesticated Plants. Economic Botany, 58(1), 5-10. doi:10.1663/0013-0001(2004)058[0005:usateo]2.0.co;2 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem