- -

Mediterranean Long Shelf-Life Landraces: An Untapped Genetic Resource for Tomato Improvement

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mediterranean Long Shelf-Life Landraces: An Untapped Genetic Resource for Tomato Improvement

Mostrar el registro completo del ítem

Conesa, MA.; Fullana-Pericas, M.; Granell Richart, A.; Galmes, J. (2020). Mediterranean Long Shelf-Life Landraces: An Untapped Genetic Resource for Tomato Improvement. Frontiers in Plant Science. 10:1-21. https://doi.org/10.3389/fpls.2019.01651

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143778

Ficheros en el ítem

Metadatos del ítem

Título: Mediterranean Long Shelf-Life Landraces: An Untapped Genetic Resource for Tomato Improvement
Autor: Conesa, Miguel A. Fullana-Pericas, Mateu GRANELL RICHART, ANTONIO Galmes, Jeroni
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Fecha difusión:
Resumen:
[EN] The Mediterranean long shelf-life (LSL) tomatoes are a group of landraces with a fruit remaining sound up to 6¿12 months after harvest. Most have been selected under semi-arid Mediterranean summer conditions with poor ...[+]
Palabras clave: Drought tolerance , Extended fruit shelf-life , Fruit quality traits , Gas exchange , Mediterranean landraces , Tomato , Yield
Derechos de uso: Reconocimiento (by)
Fuente:
Frontiers in Plant Science. (eissn: 1664-462X )
DOI: 10.3389/fpls.2019.01651
Editorial:
Frontiers Media SA
Versión del editor: https://doi.org/10.3389/fpls.2019.01651
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/634561/EU/Traditional tomato varieties and cultural practices: a case for agricultural diversification with impact on food security and health of European population/
...[+]
info:eu-repo/grantAgreement/EC/H2020/634561/EU/Traditional tomato varieties and cultural practices: a case for agricultural diversification with impact on food security and health of European population/
info:eu-repo/grantAgreement/MINECO//AGL2013-42364-R/ES/TOMATES PARA LA SEQUIA: NUEVOS CONOCIMIENTOS A PARTIR DE LAS VARIEDADES LOCALES Y ESPECIES SILVESTRES/
info:eu-repo/grantAgreement/EC/H2020/679796/EU/A holistic multi-actor approach towards the design of new tomato varieties and management practices to improve yield and quality in the face of climate change/
info:eu-repo/grantAgreement/CAIB//BIA20%2F07/
info:eu-repo/grantAgreement/EC/H2020/727929/EU/A NOVEL AND INTEGRATED APPROACH TO INCREASE MULTIPLE AND COMBINED STRESS TOLERANCE IN PLANTS USING TOMATO AS A MODEL/
info:eu-repo/grantAgreement/CAIB//BIA07%2F08/
info:eu-repo/grantAgreement/CAIB//BIA09%2F12/
info:eu-repo/grantAgreement/CAIB//AAEE56%2F201/
info:eu-repo/grantAgreement/CAIB//FPI%2F1929%2F2016/
[-]
Agradecimientos:
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 727929 (TOMRES), No 634561 (TRADITOM) and No 679796 (TomGEM). Research has been also ...[+]
Tipo: Artículo

References

Abenavoli, M. R., Longo, C., Lupini, A., Miller, A. J., Araniti, F., Mercati, F., … Sunseri, F. (2016). Phenotyping two tomato genotypes with different nitrogen use efficiency. Plant Physiology and Biochemistry, 107, 21-32. doi:10.1016/j.plaphy.2016.04.021

Andreakis, N., Giordano, I., Pentangelo, A., Fogliano, V., Graziani, G., Monti, L. M., & Rao, R. (2004). DNA Fingerprinting and Quality Traits of Corbarino Cherry-like Tomato Landraces. Journal of Agricultural and Food Chemistry, 52(11), 3366-3371. doi:10.1021/jf049963y

Arah, I. K., Amaglo, H., Kumah, E. K., & Ofori, H. (2015). Preharvest and Postharvest Factors Affecting the Quality and Shelf Life of Harvested Tomatoes: A Mini Review. International Journal of Agronomy, 2015, 1-6. doi:10.1155/2015/478041 [+]
Abenavoli, M. R., Longo, C., Lupini, A., Miller, A. J., Araniti, F., Mercati, F., … Sunseri, F. (2016). Phenotyping two tomato genotypes with different nitrogen use efficiency. Plant Physiology and Biochemistry, 107, 21-32. doi:10.1016/j.plaphy.2016.04.021

Andreakis, N., Giordano, I., Pentangelo, A., Fogliano, V., Graziani, G., Monti, L. M., & Rao, R. (2004). DNA Fingerprinting and Quality Traits of Corbarino Cherry-like Tomato Landraces. Journal of Agricultural and Food Chemistry, 52(11), 3366-3371. doi:10.1021/jf049963y

Arah, I. K., Amaglo, H., Kumah, E. K., & Ofori, H. (2015). Preharvest and Postharvest Factors Affecting the Quality and Shelf Life of Harvested Tomatoes: A Mini Review. International Journal of Agronomy, 2015, 1-6. doi:10.1155/2015/478041

Bai, Y., & Lindhout, P. (2007). Domestication and Breeding of Tomatoes: What have We Gained and What Can We Gain in the Future? Annals of Botany, 100(5), 1085-1094. doi:10.1093/aob/mcm150

Baldina, S., Picarella, M. E., Troise, A. D., Pucci, A., Ruggieri, V., Ferracane, R., … Mazzucato, A. (2016). Metabolite Profiling of Italian Tomato Landraces with Different Fruit Types. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00664

Bargel, H., & Neinhuis, C. (2004). Altered Tomato (Lycopersicon esculentum Mill.) Fruit Cuticle Biomechanics of a Pleiotropic Non Ripening Mutant. Journal of Plant Growth Regulation, 23(2), 61-75. doi:10.1007/s00344-004-0036-0

Bargel, H. (2005). Tomato (Lycopersicon esculentum Mill.) fruit growth and ripening as related to the biomechanical properties of fruit skin and isolated cuticle. Journal of Experimental Botany, 56(413), 1049-1060. doi:10.1093/jxb/eri098

Barry, C. S., & Giovannoni, J. J. (2007). Ethylene and Fruit Ripening. Journal of Plant Growth Regulation, 26(2), 143-159. doi:10.1007/s00344-007-9002-y

Benites, F. R. G., Maluf, W. R., Paiva, L. V., Faria, M. V., Andrade Junior, V. C., & Gonçalves, L. D. (2010). Teste de alelismo entre os mutantes de amadurecimento alcobaça e non-ripening em tomateiro. Ciência e Agrotecnologia, 34(spe), 1669-1673. doi:10.1590/s1413-70542010000700014

Berni, R., Cantini, C., Romi, M., Hausman, J.-F., Guerriero, G., & Cai, G. (2018). Agrobiotechnology Goes Wild: Ancient Local Varieties as Sources of Bioactives. International Journal of Molecular Sciences, 19(8), 2248. doi:10.3390/ijms19082248

Blanca, J., Montero-Pau, J., Sauvage, C., Bauchet, G., Illa, E., Díez, M. J., … Cañizares, J. (2015). Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics, 16(1). doi:10.1186/s12864-015-1444-1

Bota, J., Conesa, M. À., Ochogavia, J. M., Medrano, H., Francis, D. M., & Cifre, J. (2014). Characterization of a landrace collection for Tomàtiga de Ramellet (Solanum lycopersicum L.) from the Balearic Islands. Genetic Resources and Crop Evolution, 61(6), 1131-1146. doi:10.1007/s10722-014-0096-3

Brewer, M. T., Lang, L., Fujimura, K., Dujmovic, N., Gray, S., & van der Knaap, E. (2006). Development of a Controlled Vocabulary and Software Application to Analyze Fruit Shape Variation in Tomato and Other Plant Species. Plant Physiology, 141(1), 15-25. doi:10.1104/pp.106.077867

Brodribb, T. J., & Holbrook, N. M. (2003). Stomatal Closure during Leaf Dehydration, Correlation with Other Leaf Physiological Traits. Plant Physiology, 132(4), 2166-2173. doi:10.1104/pp.103.023879

Brodribb, T. J., Feild, T. S., & Jordan, G. J. (2007). Leaf Maximum Photosynthetic Rate and Venation Are Linked by Hydraulics. Plant Physiology, 144(4), 1890-1898. doi:10.1104/pp.107.101352

Brodribb, T. J., Feild, T. S., & Sack, L. (2010). Viewing leaf structure and evolution from a hydraulic perspective. Functional Plant Biology, 37(6), 488. doi:10.1071/fp10010

Brugarolas, M., Martínez-Carrasco, L., Martínez-Poveda, A., & Ruiz-Martínez, J. J. (2009). A competitive strategy for vegetable products: traditional varieties of tomato in the local market. Spanish Journal of Agricultural Research, 7(2), 294. doi:10.5424/sjar/2009072-420

Villa, T. C. C., Maxted, N., Scholten, M., & Ford-Lloyd, B. (2005). Defining and identifying crop landraces. Plant Genetic Resources, 3(3), 373-384. doi:10.1079/pgr200591

Casa, R., & Rouphael, Y. (2014). Effects of partial root-zone drying irrigation on yield, fruit quality, and water-use efficiency in processing tomato. The Journal of Horticultural Science and Biotechnology, 89(4), 389-396. doi:10.1080/14620316.2014.11513097

Casañas, F., Simó, J., Casals, J., & Prohens, J. (2017). Toward an Evolved Concept of Landrace. Frontiers in Plant Science, 08. doi:10.3389/fpls.2017.00145

Casals, J., Cebolla-Cornejo, J., Roselló, S., Beltrán, J., Casañas, F., & Nuez, F. (2011). Long-term postharvest aroma evolution of tomatoes with the alcobaça (alc) mutation. European Food Research and Technology, 233(2), 331-342. doi:10.1007/s00217-011-1517-6

Casals, J., Pascual, L., Cañizares, J., Cebolla-Cornejo, J., Casañas, F., & Nuez, F. (2011). Genetic basis of long shelf life and variability into Penjar tomato. Genetic Resources and Crop Evolution, 59(2), 219-229. doi:10.1007/s10722-011-9677-6

Missio, J. C., Renau, R. M., Artigas, F. C., & Cornejo, J. C. (2015). Sugar-and-acid profile of Penjar tomatoes and its evolution during storage. Scientia Agricola, 72(4), 314-321. doi:10.1590/0103-9016-2014-0311

Causse, M., Friguet, C., Coiret, C., Lépicier, M., Navez, B., Lee, M., … Grandillo, S. (2010). Consumer Preferences for Fresh Tomato at the European Scale: A Common Segmentation on Taste and Firmness. Journal of Food Science, 75(9), S531-S541. doi:10.1111/j.1750-3841.2010.01841.x

Cebolla-Cornejo, J., Roselló, S., & Nuez, F. (2013). Phenotypic and genetic diversity of Spanish tomato landraces. Scientia Horticulturae, 162, 150-164. doi:10.1016/j.scienta.2013.07.044

Condon, A., Farquhar, G., & Richards, R. (1990). Genotypic Variation in Carbon Isotope Discrimination and Transpiration Efficiency in Wheat. Leaf Gas Exchange and Whole Plant Studies. Functional Plant Biology, 17(1), 9. doi:10.1071/pp9900009

Conesa, M. À., Galmés, J., Ochogavía, J. M., March, J., Jaume, J., Martorell, A., … Cifre, J. (2014). The postharvest tomato fruit quality of long shelf-life Mediterranean landraces is substantially influenced by irrigation regimes. Postharvest Biology and Technology, 93, 114-121. doi:10.1016/j.postharvbio.2014.02.014

Corrado, G., Caramante, M., Piffanelli, P., & Rao, R. (2014). Genetic diversity in Italian tomato landraces: Implications for the development of a core collection. Scientia Horticulturae, 168, 138-144. doi:10.1016/j.scienta.2014.01.027

Cortés-Olmos, C., Valcárcel, J. V., Roselló, J., Díez, M. J., & Cebolla-Cornejo, J. (2015). Traditional Eastern Spanish varieties of tomato. Scientia Agricola, 72(5), 420-431. doi:10.1590/0103-9016-2014-0322

D’Esposito, D., Ferriello, F., Molin, A. D., Diretto, G., Sacco, A., Minio, A., … Ercolano, M. R. (2017). Unraveling the complexity of transcriptomic, metabolomic and quality environmental response of tomato fruit. BMC Plant Biology, 17(1). doi:10.1186/s12870-017-1008-4

Daunay, M.-C., Laterrot, H., & Janick, J. (2007). ICONOGRAPHY OF THE SOLANACEAE FROM ANTIQUITY TO THE XVIITH CENTURY: A RICH SOURCE OF INFORMATION ON GENETIC DIVERSITY AND USES. Acta Horticulturae, (745), 59-88. doi:10.17660/actahortic.2007.745.3

Dias, T. J. M., Maluf, W. R., Faria, M. V., Freitas, J. A. de, Gomes, L. A. A., Resende, J. T. V., & Azevedo, S. M. de. (2003). Alcobaça allele and genotypic backgrounds affect yield and fruit shelf life of tomato hybrids. Scientia Agricola, 60(2), 269-275. doi:10.1590/s0103-90162003000200010

Domínguez, E., Cuartero, J., & Heredia, A. (2011). An overview on plant cuticle biomechanics. Plant Science, 181(2), 77-84. doi:10.1016/j.plantsci.2011.04.016

Dwivedi, S. L., Ceccarelli, S., Blair, M. W., Upadhyaya, H. D., Are, A. K., & Ortiz, R. (2016). Landrace Germplasm for Improving Yield and Abiotic Stress Adaptation. Trends in Plant Science, 21(1), 31-42. doi:10.1016/j.tplants.2015.10.012

Elia, A., & Santamaria, P. (2013). Biodiversity in vegetable crops, a heritage to save: the case of Puglia region. Italian Journal of Agronomy, 8(1), 4. doi:10.4081/ija.2013.e4

Ercolano, M., Sacco, A., Ferriello, F., D’Alessandro, R., Tononi, P., Traini, A., … Frusciante, L. (2014). Patchwork sequencing of tomato San Marzano and Vesuviano varieties highlights genome-wide variations. BMC Genomics, 15(1), 138. doi:10.1186/1471-2164-15-138

FAIRCHILD, D. (1927). THE TOMATO TERRACES OF BAÑALBUFAR. Journal of Heredity, 18(6), 245-251. doi:10.1093/oxfordjournals.jhered.a102861

Farquhar, G., O’Leary, M., & Berry, J. (1982). On the Relationship Between Carbon Isotope Discrimination and the Intercellular Carbon Dioxide Concentration in Leaves. Functional Plant Biology, 9(2), 121. doi:10.1071/pp9820121

Fattore, M., Montesano, D., Pagano, E., Teta, R., Borrelli, F., Mangoni, A., … Albrizio, S. (2016). Carotenoid and flavonoid profile and antioxidant activity in «Pomodorino Vesuviano» tomatoes. Journal of Food Composition and Analysis, 53, 61-68. doi:10.1016/j.jfca.2016.08.008

Figàs, M. R., Prohens, J., Raigón, M. D., Fita, A., García-Martínez, M. D., Casanova, C., … Soler, S. (2015). Characterization of composition traits related to organoleptic and functional quality for the differentiation, selection and enhancement of local varieties of tomato from different cultivar groups. Food Chemistry, 187, 517-524. doi:10.1016/j.foodchem.2015.04.083

Figàs, M. R., Prohens, J., Raigón, M. D., Pereira-Dias, L., Casanova, C., García-Martínez, M. D., … Soler, S. (2018). Insights Into the Adaptation to Greenhouse Cultivation of the Traditional Mediterranean Long Shelf-Life Tomato Carrying the alc Mutation: A Multi-Trait Comparison of Landraces, Selections, and Hybrids in Open Field and Greenhouse. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01774

Flexas, J., Niinemets, Ü., Gallé, A., Barbour, M. M., Centritto, M., Diaz-Espejo, A., … Medrano, H. (2013). Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency. Photosynthesis Research, 117(1-3), 45-59. doi:10.1007/s11120-013-9844-z

Flexas, J., Scoffoni, C., Gago, J., & Sack, L. (2013). Leaf mesophyll conductance and leaf hydraulic conductance: an introduction to their measurement and coordination. Journal of Experimental Botany, 64(13), 3965-3981. doi:10.1093/jxb/ert319

Foolad, M. R., & Panthee, D. R. (2012). Marker-Assisted Selection in Tomato Breeding. Critical Reviews in Plant Sciences, 31(2), 93-123. doi:10.1080/07352689.2011.616057

Foolad, M. R. (2007). Genome Mapping and Molecular Breeding of Tomato. International Journal of Plant Genomics, 2007, 1-52. doi:10.1155/2007/64358

Franks, P. J., & Beerling, D. J. (2009). Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proceedings of the National Academy of Sciences, 106(25), 10343-10347. doi:10.1073/pnas.0904209106

Frison, E. A., Cherfas, J., & Hodgkin, T. (2011). Agricultural Biodiversity Is Essential for a Sustainable Improvement in Food and Nutrition Security. Sustainability, 3(1), 238-253. doi:10.3390/su3010238

Fullana-Pericas, M., Conesa, M. A., Soler, S., Ribas-Carbo, M., Granell, A., & Galmes, J. (2017). Variations of leaf morphology, photosynthetic traits and water-use efficiency in Western-Mediterranean tomato landraces. Photosynthetica, 55(1), 121-133. doi:10.1007/s11099-016-0653-4

Fullana-Pericàs, M., Conesa, M. À., Douthe, C., El Aou-ouad, H., Ribas-Carbó, M., & Galmés, J. (2019). Tomato landraces as a source to minimize yield losses and improve fruit quality under water deficit conditions. Agricultural Water Management, 223, 105722. doi:10.1016/j.agwat.2019.105722

GALMÉS, J., CONESA, M. À., OCHOGAVÍA, J. M., PERDOMO, J. A., FRANCIS, D. M., RIBAS-CARBÓ, M., … CIFRE, J. (2010). Physiological and morphological adaptations in relation to water use efficiency in Mediterranean accessions of Solanum lycopersicum. Plant, Cell & Environment, 34(2), 245-260. doi:10.1111/j.1365-3040.2010.02239.x

GALMÉS, J., OCHOGAVÍA, J. M., GAGO, J., ROLDÁN, E. J., CIFRE, J., & CONESA, M. À. (2012). Leaf responses to drought stress in Mediterranean accessions ofSolanum lycopersicum: anatomical adaptations in relation to gas exchange parameters. Plant, Cell & Environment, 36(5), 920-935. doi:10.1111/pce.12022

García-Martínez, S., Corrado, G., Ruiz, J. J., & Rao, R. (2012). Diversity and structure of a sample of traditional Italian and Spanish tomato accessions. Genetic Resources and Crop Evolution, 60(2), 789-798. doi:10.1007/s10722-012-9876-9

Garcia-Mier, L., Jimenez-Garcia, S. N., Chapa-Oliver, A. M., Mejia-Teniente, L., Ocampo-Velazquez, R. V., Rico-García, E., … Torres-Pacheco, I. (2014). Strategies for Sustainable Plant Food Production: Facing the Current Agricultural Challenges—Agriculture for Today and Tomorrow. Biosystems Engineering: Biofactories for Food Production in the Century XXI, 1-50. doi:10.1007/978-3-319-03880-3_1

Giorio, P., Guida, G., Mistretta, C., Sellami, M. H., Oliva, M., Punzo, P., … Albrizio, R. (2018). Physiological, biochemical and molecular responses to water stress and rehydration in Mediterranean adapted tomato landraces. Plant Biology, 20(6), 995-1004. doi:10.1111/plb.12891

Giovannoni, J., Nguyen, C., Ampofo, B., Zhong, S., & Fei, Z. (2017). The Epigenome and Transcriptional Dynamics of Fruit Ripening. Annual Review of Plant Biology, 68(1), 61-84. doi:10.1146/annurev-arplant-042916-040906

Giovannoni, J. J. (2007). Fruit ripening mutants yield insights into ripening control. Current Opinion in Plant Biology, 10(3), 283-289. doi:10.1016/j.pbi.2007.04.008

Guida, G., Sellami, M. H., Mistretta, C., Oliva, M., Buonomo, R., De Mascellis, R., … Giorio, P. (2017). Agronomical, physiological and fruit quality responses of two Italian long-storage tomato landraces under rain-fed and full irrigation conditions. Agricultural Water Management, 180, 126-135. doi:10.1016/j.agwat.2016.11.004

Kirda, C., Cetin, M., Dasgan, Y., Topcu, S., Kaman, H., Ekici, B., … Ozguven, A. I. (2004). Yield response of greenhouse grown tomato to partial root drying and conventional deficit irrigation. Agricultural Water Management, 69(3), 191-201. doi:10.1016/j.agwat.2004.04.008

Klee, H. J., & Giovannoni, J. J. (2011). Genetics and Control of Tomato Fruit Ripening and Quality Attributes. Annual Review of Genetics, 45(1), 41-59. doi:10.1146/annurev-genet-110410-132507

Klee, H. J., & Tieman, D. M. (2013). Genetic challenges of flavor improvement in tomato. Trends in Genetics, 29(4), 257-262. doi:10.1016/j.tig.2012.12.003

KOPELIOVITCH, E., MIZRAHI, Y., RABINOWITCH, H. D., & KEDAR, N. (1980). Physiology of the tomato mutant alcobaca. Physiologia Plantarum, 48(2), 307-311. doi:10.1111/j.1399-3054.1980.tb03260.x

Kopeliovitch, E., Rabinowitch, H. D., Mizrahi, Y., & Kedar, N. (1981). Mode of inheritance of Alcobaca, a tomato fruit-ripening mutant. Euphytica, 30(1), 223-225. doi:10.1007/bf00033685

Kosma, D. K., Parsons, E. P., Isaacson, T., Lü, S., Rose, J. K. C., & Jenks, M. A. (2010). Fruit cuticle lipid composition during development in tomato ripening mutants. Physiologia Plantarum, 139(1), 107-117. doi:10.1111/j.1399-3054.2009.01342.x

Koutsika-Sotiriou, M., Mylonas, I., Tsivelikas, A., & Traka-Mavrona, E. (2016). Compensation studies on the tomato landrace ‘Tomataki Santorinis’. Scientia Horticulturae, 198, 78-85. doi:10.1016/j.scienta.2015.11.006

Kumar, R., Tamboli, V., Sharma, R., & Sreelakshmi, Y. (2018). NAC-NOR mutations in tomato Penjar accessions attenuate multiple metabolic processes and prolong the fruit shelf life. Food Chemistry, 259, 234-244. doi:10.1016/j.foodchem.2018.03.135

Labate, J. A., & Robertson, L. D. (2012). Evidence of cryptic introgression in tomato (Solanum lycopersicum L.) based on wild tomato species alleles. BMC Plant Biology, 12(1), 133. doi:10.1186/1471-2229-12-133

Landi, S., De Lillo, A., Nurcato, R., Grillo, S., & Esposito, S. (2017). In-field study on traditional Italian tomato landraces: The constitutive activation of the ROS scavenging machinery reduces effects of drought stress. Plant Physiology and Biochemistry, 118, 150-160. doi:10.1016/j.plaphy.2017.06.011

Lin, T., Zhu, G., Zhang, J., Xu, X., Yu, Q., Zheng, Z., … Huang, S. (2014). Genomic analyses provide insights into the history of tomato breeding. Nature Genetics, 46(11), 1220-1226. doi:10.1038/ng.3117

Lobell, D. B., & Gourdji, S. M. (2012). The Influence of Climate Change on Global Crop Productivity. Plant Physiology, 160(4), 1686-1697. doi:10.1104/pp.112.208298

Maamar, B., Maatoug, M., Iriti, M., Dellal, A., & Ait hammou Mohammed. (2015). Physiological effects of ozone exposure on De Colgar and Rechaiga II tomato (Solanum lycopersicum L.) cultivars. Environmental Science and Pollution Research, 22(16), 12124-12132. doi:10.1007/s11356-015-4490-y

Manzo, N., Pizzolongo, F., Meca, G., Aiello, A., Marchetti, N., & Romano, R. (2018). Comparative Chemical Compositions of Fresh and Stored Vesuvian PDO «Pomodorino Del Piennolo» Tomato and the Ciliegino Variety. Molecules, 23(11), 2871. doi:10.3390/molecules23112871

Mazzucato, A., Papa, R., Bitocchi, E., Mosconi, P., Nanni, L., Negri, V., … Veronesi, F. (2008). Genetic diversity, structure and marker-trait associations in a collection of Italian tomato (Solanum lycopersicum L.) landraces. Theoretical and Applied Genetics, 116(5), 657-669. doi:10.1007/s00122-007-0699-6

Mercati, F., Longo, C., Poma, D., Araniti, F., Lupini, A., Mammano, M. M., … Sunseri, F. (2014). Genetic variation of an Italian long shelf-life tomato (Solanum lycopersicon L.) collection by using SSR and morphological fruit traits. Genetic Resources and Crop Evolution, 62(5), 721-732. doi:10.1007/s10722-014-0191-5

Meyer, R. S., DuVal, A. E., & Jensen, H. R. (2012). Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytologist, 196(1), 29-48. doi:10.1111/j.1469-8137.2012.04253.x

Mirouze, M., & Paszkowski, J. (2011). Epigenetic contribution to stress adaptation in plants. Current Opinion in Plant Biology, 14(3), 267-274. doi:10.1016/j.pbi.2011.03.004

Moore, S. (2002). Use of genomics tools to isolate key ripening genes and analyse fruit maturation in tomato. Journal of Experimental Botany, 53(377), 2023-2030. doi:10.1093/jxb/erf057

Mutschler, M., Guttieri, M., Kinzer, S., Grierson, D., & Tucker, G. (1988). Changes in ripening-related processes in tomato conditioned by the alc mutant. Theoretical and Applied Genetics, 76(2), 285-292. doi:10.1007/bf00257857

Mutschler, M. A., Wolfe, D. W., Cobb, E. D., & Yourstone, K. S. (1992). Tomato Fruit Quality and Shelf Life in Hybrids Heterozygous for the alc Ripening Mutant. HortScience, 27(4), 352-355. doi:10.21273/hortsci.27.4.352

Nuccio, M. L., Paul, M., Bate, N. J., Cohn, J., & Cutler, S. R. (2018). Where are the drought tolerant crops? An assessment of more than two decades of plant biotechnology effort in crop improvement. Plant Science, 273, 110-119. doi:10.1016/j.plantsci.2018.01.020

Onoda, Y., Wright, I. J., Evans, J. R., Hikosaka, K., Kitajima, K., Niinemets, Ü., … Westoby, M. (2017). Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytologist, 214(4), 1447-1463. doi:10.1111/nph.14496

Osorio, S., Scossa, F., & Fernie, A. R. (2013). Molecular regulation of fruit ripening. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00198

Panthee, D. R., Labate, J. A., McGrath, M. T., Breksa, A. P., & Robertson, L. D. (2013). Genotype and environmental interaction for fruit quality traits in vintage tomato varieties. Euphytica, 193(2), 169-182. doi:10.1007/s10681-013-0895-1

Patanè, C., & Cosentino, S. L. (2010). Effects of soil water deficit on yield and quality of processing tomato under a Mediterranean climate. Agricultural Water Management, 97(1), 131-138. doi:10.1016/j.agwat.2009.08.021

Patanè, C., Scordia, D., Testa, G., & Cosentino, S. L. (2016). Physiological screening for drought tolerance in Mediterranean long-storage tomato. Plant Science, 249, 25-34. doi:10.1016/j.plantsci.2016.05.006

Patanè, C., Pellegrino, A., Saita, A., Siracusa, L., Ruberto, G., & Barbagallo, R. (2017). Mediterranean long storage tomato as a source of novel products for the agrifood industry: Nutritional and technological traits. LWT - Food Science and Technology, 85, 445-448. doi:10.1016/j.lwt.2016.12.011

Pernice, R., Parisi, M., Giordano, I., Pentangelo, A., Graziani, G., Gallo, M., … Ritieni, A. (2010). Antioxidants profile of small tomato fruits: Effect of irrigation and industrial process. Scientia Horticulturae, 126(2), 156-163. doi:10.1016/j.scienta.2010.06.021

Renna, M., Durante, M., Gonnella, M., Buttaro, D., D’Imperio, M., Mita, G., & Serio, F. (2018). Quality and Nutritional Evaluation of Regina Tomato, a Traditional Long-Storage Landrace of Puglia (Southern Italy). Agriculture, 8(6), 83. doi:10.3390/agriculture8060083

Rockstrom, J., Lannerstad, M., & Falkenmark, M. (2007). Assessing the water challenge of a new green revolution in developing countries. Proceedings of the National Academy of Sciences, 104(15), 6253-6260. doi:10.1073/pnas.0605739104

Rodríguez, G. R., Muños, S., Anderson, C., Sim, S.-C., Michel, A., Causse, M., … van der Knaap, E. (2011). Distribution of SUN, OVATE, LC, and FAS in the Tomato Germplasm and the Relationship to Fruit Shape Diversity. Plant Physiology, 156(1), 275-285. doi:10.1104/pp.110.167577

Ruiz, J. J., García-Martínez, S., Picó, B., Gao, M., & Quiros, C. F. (2005). Genetic Variability and Relationship of Closely Related Spanish Traditional Cultivars of Tomato as Detected by SRAP and SSR Markers. Journal of the American Society for Horticultural Science, 130(1), 88-94. doi:10.21273/jashs.130.1.88

Saladié, M., Matas, A. J., Isaacson, T., Jenks, M. A., Goodwin, S. M., Niklas, K. J., … Rose, J. K. C. (2007). A Reevaluation of the Key Factors That Influence Tomato Fruit Softening and Integrity. Plant Physiology, 144(2), 1012-1028. doi:10.1104/pp.107.097477

Schmitz, R. J., Schultz, M. D., Urich, M. A., Nery, J. R., Pelizzola, M., Libiger, O., … Ecker, J. R. (2013). Patterns of population epigenomic diversity. Nature, 495(7440), 193-198. doi:10.1038/nature11968

Scoffoni, C., Chatelet, D. S., Pasquet-kok, J., Rawls, M., Donoghue, M. J., Edwards, E. J., & Sack, L. (2016). Hydraulic basis for the evolution of photosynthetic productivity. Nature Plants, 2(6). doi:10.1038/nplants.2016.72

Seymour, G. B., Chapman, N. H., Chew, B. L., & Rose, J. K. C. (2012). Regulation of ripening and opportunities for control in tomato and other fruits. Plant Biotechnology Journal, 11(3), 269-278. doi:10.1111/j.1467-7652.2012.00738.x

Sim, S.-C., Robbins, M. D., Deynze, A. V., Michel, A. P., & Francis, D. M. (2010). Population structure and genetic differentiation associated with breeding history and selection in tomato (Solanum lycopersicum L.). Heredity, 106(6), 927-935. doi:10.1038/hdy.2010.139

Sim, S.-C., Van Deynze, A., Stoffel, K., Douches, D. S., Zarka, D., Ganal, M. W., … Francis, D. M. (2012). High-Density SNP Genotyping of Tomato (Solanum lycopersicum L.) Reveals Patterns of Genetic Variation Due to Breeding. PLoS ONE, 7(9), e45520. doi:10.1371/journal.pone.0045520

Sims, W. L. (1980). HISTORY OF TOMATO PRODUCTION FOR INDUSTRY AROUND THE WORLD. Acta Horticulturae, (100), 25-26. doi:10.17660/actahortic.1980.100.1

SINESIO, F., MONETA, E., & PEPARAIO, M. (2007). SENSORY CHARACTERISTICS OF TRADITIONAL FIELD GROWN TOMATO GENOTYPES IN SOUTHERN ITALY. Journal of Food Quality, 30(6), 878-895. doi:10.1111/j.1745-4557.2007.00161.x

Siracusa, L., Patanè, C., Avola, G., & Ruberto, G. (2011). Polyphenols as Chemotaxonomic Markers in Italian «Long-Storage» Tomato Genotypes. Journal of Agricultural and Food Chemistry, 60(1), 309-314. doi:10.1021/jf203858y

Siracusa, L., Avola, G., Patanè, C., Riggi, E., & Ruberto, G. (2013). Re-evaluation of traditional Mediterranean foods. The local landraces of ‘Cipolla di Giarratana’ (Allium cepa L.) and long-storage tomato(Lycopersicon esculentum L.): quality traits and polyphenol content. Journal of the Science of Food and Agriculture, 93(14), 3512-3519. doi:10.1002/jsfa.6199

Siracusa, L., Patanè, C., Rizzo, V., Cosentino, S. L., & Ruberto, G. (2018). Targeted secondary metabolic and physico-chemical traits analysis to assess genetic variability within a germplasm collection of «long storage» tomatoes. Food Chemistry, 244, 275-283. doi:10.1016/j.foodchem.2017.10.043

Sreeman, S. M., Vijayaraghavareddy, P., Sreevathsa, R., Rajendrareddy, S., Arakesh, S., Bharti, P., … Soolanayakanahally, R. (2018). Corrigendum: Introgression of Physiological Traits for a Comprehensive Improvement of Drought Adaptation in Crop Plants. Frontiers in Chemistry, 6. doi:10.3389/fchem.2018.00382

Tamburino, R., Vitale, M., Ruggiero, A., Sassi, M., Sannino, L., Arena, S., … Scotti, N. (2017). Chloroplast proteome response to drought stress and recovery in tomato (Solanum lycopersicum L.). BMC Plant Biology, 17(1). doi:10.1186/s12870-017-0971-0

Tardieu, F., Simonneau, T., & Muller, B. (2018). The Physiological Basis of Drought Tolerance in Crop Plants: A Scenario-Dependent Probabilistic Approach. Annual Review of Plant Biology, 69(1), 733-759. doi:10.1146/annurev-arplant-042817-040218

Terzopoulos, P. J., & Bebeli, P. J. (2008). DNA and morphological diversity of selected Greek tomato (Solanum lycopersicum L.) landraces. Scientia Horticulturae, 116(4), 354-361. doi:10.1016/j.scienta.2008.02.010

Terzopoulos, P. J., & Bebeli, P. J. (2010). Phenotypic diversity in Greek tomato (Solanum lycopersicum L.) landraces. Scientia Horticulturae, 126(2), 138-144. doi:10.1016/j.scienta.2010.06.022

Tieman, D., Zhu, G., Resende, M. F. R., Lin, T., Nguyen, C., Bies, D., … Klee, H. (2017). A chemical genetic roadmap to improved tomato flavor. Science, 355(6323), 391-394. doi:10.1126/science.aal1556

Tranchida-Lombardo, V., Aiese Cigliano, R., Anzar, I., Landi, S., Palombieri, S., Colantuono, C., … Grillo, S. (2017). Whole-genome re-sequencing of two Italian tomato landraces reveals sequence variations in genes associated with stress tolerance, fruit quality and long shelf-life traits. DNA Research, 25(2), 149-160. doi:10.1093/dnares/dsx045

Tranchida-Lombardo, V., Mercati, F., Avino, M., Punzo, P., Fiore, M. C., Poma, I., … Grillo, S. (2018). Genetic diversity in a collection of Italian long storage tomato landraces as revealed by SNP markers array. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 153(2), 288-297. doi:10.1080/11263504.2018.1478900

Tuberosa, R. (2012). Phenotyping for drought tolerance of crops in the genomics era. Frontiers in Physiology, 3. doi:10.3389/fphys.2012.00347

Van Oosten, M. J., Bressan, R. A., Zhu, J.-K., Bohnert, H. J., & Chinnusamy, V. (2014). The Role of the Epigenome in Gene Expression Control and the Epimark Changes in Response to the Environment. Critical Reviews in Plant Sciences, 33(1), 64-87. doi:10.1080/07352689.2014.852920

Vrebalov, J. (2002). A MADS-Box Gene Necessary for Fruit Ripening at the Tomato Ripening-Inhibitor (Rin) Locus. Science, 296(5566), 343-346. doi:10.1126/science.1068181

Wang, N., Liu, D., Tanase, K., Shikata, M., Chen, H., Pankasem, N., … Ezura, H. (2018). Diversification of NOR-like genes resulted in functional similarity in tomato. Plant Growth Regulation, 86(2), 297-309. doi:10.1007/s10725-018-0429-x

Ximénez-Embún, M. G., González-Guzmán, M., Arbona, V., Gómez-Cadenas, A., Ortego, F., & Castañera, P. (2018). Plant-Mediated Effects of Water Deficit on the Performance of Tetranychus evansi on Tomato Drought-Adapted Accessions. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01490

Yu, Q., Wang, B., Li, N., Tang, Y., Yang, S., Yang, T., … Asmutola, P. (2017). CRISPR/Cas9-induced Targeted Mutagenesis and Gene Replacement to Generate Long-shelf Life Tomato Lines. Scientific Reports, 7(1). doi:10.1038/s41598-017-12262-1

Zanor, M. I., Rambla, J.-L., Chaïb, J., Steppa, A., Medina, A., Granell, A., … Causse, M. (2009). Metabolic characterization of loci affecting sensory attributes in tomato allows an assessment of the influence of the levels of primary metabolites and volatile organic contents. Journal of Experimental Botany, 60(7), 2139-2154. doi:10.1093/jxb/erp086

Zeven, A. C. (1998). Euphytica, 104(2), 127-139. doi:10.1023/a:1018683119237

Zhong, S., Fei, Z., Chen, Y.-R., Zheng, Y., Huang, M., Vrebalov, J., … Giovannoni, J. J. (2013). Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nature Biotechnology, 31(2), 154-159. doi:10.1038/nbt.2462

Zohary, D. (2004). Unconscious Selection and the Evolution of Domesticated Plants. Economic Botany, 58(1), 5-10. doi:10.1663/0013-0001(2004)058[0005:usateo]2.0.co;2

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem