- -

An in situ XAS study of the activation of precursor-dependent Pd nanoparticles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An in situ XAS study of the activation of precursor-dependent Pd nanoparticles

Mostrar el registro completo del ítem

Wittee Lopes, C.; Cerrillo, JL.; Palomares Gimeno, AE.; Rey Garcia, F.; Agostini, G. (2018). An in situ XAS study of the activation of precursor-dependent Pd nanoparticles. Physical Chemistry Chemical Physics. 20(18):12700-12709. https://doi.org/10.1039/C8CP00517F

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143781

Ficheros en el ítem

Metadatos del ítem

Título: An in situ XAS study of the activation of precursor-dependent Pd nanoparticles
Autor: Wittee Lopes, Christian Cerrillo, José Luis Palomares Gimeno, Antonio Eduardo Rey Garcia, Fernando Agostini, G.
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Fecha difusión:
Resumen:
[EN] The activation of precursor-dependent Pd nanoparticles was comprehensively followed by in situ X-ray absorption spectroscopy on two inorganic supports for rationalizing the final catalytic activity. Two series of ...[+]
Derechos de uso: Reserva de todos los derechos
Fuente:
Physical Chemistry Chemical Physics. (issn: 1463-9076 )
DOI: 10.1039/C8CP00517F
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/C8CP00517F
Código del Proyecto:
info:eu-repo/grantAgreement/CAPES//13191%2F13-6/
info:eu-repo/grantAgreement/MINECO//SVP-2014-068600/ES/SVP-2014-068600/
info:eu-repo/grantAgreement/MINECO//MAT2015-71842-P/ES/SINTESIS Y CARACTERIZACION AVANZADA DE NUEVOS MATERIALES ZEOLITICOS Y APLICACIONES EN ADSORCION, MEDIOAMBIENTE Y EN LA CONSERVACION DE ALIMENTOS/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
Agradecimientos:
The authors thank the Spanish Ministry of Economy and Competitiveness through MAT2015-71842-P (MINECO/FEDER) and SEV-2016-0683 projects for the financial support. We gratefully acknowledge ALBA synchrotron for allocating ...[+]
Tipo: Artículo

References

Chen, X., Huo, X., Liu, J., Wang, Y., Werth, C. J., & Strathmann, T. J. (2017). Exploring beyond palladium: Catalytic reduction of aqueous oxyanion pollutants with alternative platinum group metals and new mechanistic implications. Chemical Engineering Journal, 313, 745-752. doi:10.1016/j.cej.2016.12.058

Lu, C., Wang, M., Feng, Z., Qi, Y., Feng, F., Ma, L., … Li, X. (2017). A phosphorus–carbon framework over activated carbon supported palladium nanoparticles for the chemoselective hydrogenation of para-chloronitrobenzene. Catalysis Science & Technology, 7(7), 1581-1589. doi:10.1039/c7cy00157f

Soares, O. S. G. P., Freitas, C. M. A. S., Fonseca, A. M., Órfão, J. J. M., Pereira, M. F. R., & Neves, I. C. (2016). Bromate reduction in water promoted by metal catalysts prepared over faujasite zeolite. Chemical Engineering Journal, 291, 199-205. doi:10.1016/j.cej.2016.01.093 [+]
Chen, X., Huo, X., Liu, J., Wang, Y., Werth, C. J., & Strathmann, T. J. (2017). Exploring beyond palladium: Catalytic reduction of aqueous oxyanion pollutants with alternative platinum group metals and new mechanistic implications. Chemical Engineering Journal, 313, 745-752. doi:10.1016/j.cej.2016.12.058

Lu, C., Wang, M., Feng, Z., Qi, Y., Feng, F., Ma, L., … Li, X. (2017). A phosphorus–carbon framework over activated carbon supported palladium nanoparticles for the chemoselective hydrogenation of para-chloronitrobenzene. Catalysis Science & Technology, 7(7), 1581-1589. doi:10.1039/c7cy00157f

Soares, O. S. G. P., Freitas, C. M. A. S., Fonseca, A. M., Órfão, J. J. M., Pereira, M. F. R., & Neves, I. C. (2016). Bromate reduction in water promoted by metal catalysts prepared over faujasite zeolite. Chemical Engineering Journal, 291, 199-205. doi:10.1016/j.cej.2016.01.093

Yaseneva, P., Marti, C. F., Palomares, E., Fan, X., Morgan, T., Perez, P. S., … Lapkin, A. A. (2014). Efficient reduction of bromates using carbon nanofibre supported catalysts: Experimental and a comparative life cycle assessment study. Chemical Engineering Journal, 248, 230-241. doi:10.1016/j.cej.2014.03.034

Kalmykov, P. A., & Klyuev, M. V. (2016). A study of palladium hydrogenation catalysts based on nanodiamonds and activated carbon. Petroleum Chemistry, 56(1), 27-32. doi:10.1134/s0965544115080095

Gaspar, A. B., & Dieguez, L. C. (2000). Dispersion stability and methylcyclopentane hydrogenolysis in Pd/Al2O3 catalysts. Applied Catalysis A: General, 201(2), 241-251. doi:10.1016/s0926-860x(00)00442-7

Khudorozhkov, A. K., Chetyrin, I. A., Bukhtiyarov, A. V., Prosvirin, I. P., & Bukhtiyarov, V. I. (2017). Propane Oxidation Over Pd/Al2O3: Kinetic and In Situ XPS Study. Topics in Catalysis, 60(1-2), 190-197. doi:10.1007/s11244-017-0733-0

Vedyagin, A. A., Volodin, A. M., Kenzhin, R. M., Stoyanovskii, V. O., Rogov, V. A., Medvedev, D. A., & Mishakov, I. V. (2017). Characterization and study on the thermal aging behavior of palladium–alumina catalysts. Journal of Thermal Analysis and Calorimetry, 130(3), 1865-1874. doi:10.1007/s10973-017-6530-y

Wang, C., Yang, F., Yang, W., Ren, L., Zhang, Y., Jia, X., … Li, Y. (2015). PdO nanoparticles enhancing the catalytic activity of Pd/carbon nanotubes for 4-nitrophenol reduction. RSC Advances, 5(35), 27526-27532. doi:10.1039/c4ra16792a

Di Natale, F., Orefice, M., La Motta, F., Erto, A., & Lancia, A. (2017). Unveiling the potentialities of activated carbon in recovering palladium from model leaching solutions. Separation and Purification Technology, 174, 183-193. doi:10.1016/j.seppur.2016.10.022

Toebes, M. L., van Dillen, J. A., & de Jong, K. P. (2001). Synthesis of supported palladium catalysts. Journal of Molecular Catalysis A: Chemical, 173(1-2), 75-98. doi:10.1016/s1381-1169(01)00146-7

Munnik, P., de Jongh, P. E., & de Jong, K. P. (2015). Recent Developments in the Synthesis of Supported Catalysts. Chemical Reviews, 115(14), 6687-6718. doi:10.1021/cr500486u

Moulijn, J. ., van Diepen, A. ., & Kapteijn, F. (2001). Catalyst deactivation: is it predictable? Applied Catalysis A: General, 212(1-2), 3-16. doi:10.1016/s0926-860x(00)00842-5

Agostini, G., Lamberti, C., Pellegrini, R., Leofanti, G., Giannici, F., Longo, A., & Groppo, E. (2013). Effect of Pre-Reduction on the Properties and the Catalytic Activity of Pd/Carbon Catalysts: A Comparison with Pd/Al2O3. ACS Catalysis, 4(1), 187-194. doi:10.1021/cs400507m

Cho, S. J., & Kang, S. K. (2000). Reversible Structural Transformation of Palladium Catalyst Supported on La−Al2O3Probed with X-ray Absorption Fine Structure. The Journal of Physical Chemistry B, 104(34), 8124-8128. doi:10.1021/jp991857p

Harada, M., & Inada, Y. (2009). In Situ Time-Resolved XAFS Studies of Metal Particle Formation by Photoreduction in Polymer Solutions. Langmuir, 25(11), 6049-6061. doi:10.1021/la900550t

Singh, J., Lamberti, C., & van Bokhoven, J. A. (2010). Advanced X-ray absorption and emission spectroscopy: in situ catalytic studies. Chemical Society Reviews, 39(12), 4754. doi:10.1039/c0cs00054j

D. C. Koningsberger and R.Prins , X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES , Wiley , 1988

Wang, J., Wang, Q., Jiang, X., Liu, Z., Yang, W., & Frenkel, A. I. (2014). Determination of Nanoparticle Size by Measuring the Metal–Metal Bond Length: The Case of Palladium Hydride. The Journal of Physical Chemistry C, 119(1), 854-861. doi:10.1021/jp510730a

Agostini, G., Pellegrini, R., Leofanti, G., Bertinetti, L., Bertarione, S., Groppo, E., … Lamberti, C. (2009). Determination of the Particle Size, Available Surface Area, and Nature of Exposed Sites for Silica−Alumina-Supported Pd Nanoparticles: A Multitechnical Approach. The Journal of Physical Chemistry C, 113(24), 10485-10492. doi:10.1021/jp9023712

Frenkel, A. I., Hills, C. W., & Nuzzo, R. G. (2001). A View from the Inside:  Complexity in the Atomic Scale Ordering of Supported Metal Nanoparticles. The Journal of Physical Chemistry B, 105(51), 12689-12703. doi:10.1021/jp012769j

Frenkel, A. I. (1999). Solving the structure of nanoparticles by multiple-scattering EXAFS analysis. Journal of Synchrotron Radiation, 6(3), 293-295. doi:10.1107/s0909049598017786

Agostini, G., Piovano, A., Bertinetti, L., Pellegrini, R., Leofanti, G., Groppo, E., & Lamberti, C. (2014). Effect of Different Face Centered Cubic Nanoparticle Distributions on Particle Size and Surface Area Determination: A Theoretical Study. The Journal of Physical Chemistry C, 118(8), 4085-4094. doi:10.1021/jp4091014

Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2), 309-319. doi:10.1021/ja01269a023

Sing, K. S. W., Rouquerol, F., Llewellyn, P., & Rouquerol, J. (2014). Assessment of Microporosity. Adsorption by Powders and Porous Solids, 303-320. doi:10.1016/b978-0-08-097035-6.00009-7

Sing, K. S. W., Rouquerol, F., Rouquerol, J., & Llewellyn, P. (2014). Assessment of Mesoporosity. Adsorption by Powders and Porous Solids, 269-302. doi:10.1016/b978-0-08-097035-6.00008-5

Simonelli, L., Marini, C., Olszewski, W., ��vila P��rez, M., Ramanan, N., Guilera, G., … Klementiev, K. (2016). CL��SS: The hard X-ray absorption beamline of the ALBA CELLS synchrotron. Cogent Physics, 3(1). doi:10.1080/23311940.2016.1231987

Ravel, B., & Newville, M. (2005). ATHENA,ARTEMIS,HEPHAESTUS: data analysis for X-ray absorption spectroscopy usingIFEFFIT. Journal of Synchrotron Radiation, 12(4), 537-541. doi:10.1107/s0909049505012719

Yazawa, Y., Yoshida, H., Takagi, N., Komai, S., Satsuma, A., & Hattori, T. (1998). Oxidation state of palladium as a factor controlling catalytic activity of Pd/SiO2–Al2O3 in propane combustion. Applied Catalysis B: Environmental, 19(3-4), 261-266. doi:10.1016/s0926-3373(98)00080-0

Lin, C.-M., Hung, T.-L., Huang, Y.-H., Wu, K.-T., Tang, M.-T., Lee, C.-H., … Chen, Y. Y. (2007). Size-dependent lattice structure of palladium studied by x-ray absorption spectroscopy. Physical Review B, 75(12). doi:10.1103/physrevb.75.125426

Fernández-García, M. (2002). XANES analysis of catalytic systems under reaction conditions. Catalysis Reviews, 44(1), 59-121. doi:10.1081/cr-120001459

Agostini, G., Groppo, E., Piovano, A., Pellegrini, R., Leofanti, G., & Lamberti, C. (2010). Preparation of Supported Pd Catalysts: From the Pd Precursor Solution to the Deposited Pd2+Phase. Langmuir, 26(13), 11204-11211. doi:10.1021/la1005117

Kim, S.-J., Lemaux, S., Demazeau, G., Kim, J.-Y., & Choy, J.-H. (2002). X-Ray absorption spectroscopic study on LaPdO3. Journal of Materials Chemistry, 12(4), 995-1000. doi:10.1039/b106795h

Groppo, E., Liu, W., Zavorotynska, O., Agostini, G., Spoto, G., Bordiga, S., … Zecchina, A. (2010). Subnanometric Pd Particles Stabilized Inside Highly Cross-Linked Polymeric Supports. Chemistry of Materials, 22(7), 2297-2308. doi:10.1021/cm903176d

Góralski, J., Szczepaniak, B., Grams, J., Maniukiewicz, W., & Paryjczak, T. (2007). Characteristic of physicochemical properties of Pd/MgO catalysts used in the hydrodechlorination process with CCI4. Polish Journal of Chemical Technology, 9(3), 77-80. doi:10.2478/v10026-007-0059-y

Agostini, G., Groppo, E., Bordiga, S., Zecchina, A., Prestipino, C., D’Acapito, F., … Lamberti, C. (2007). Reactivity of Cr Species Grafted on SiO2/Si(100) Surface:  A Reflection Extended X-ray Absorption Fine Structure Study down to the Submonolayer Regime. The Journal of Physical Chemistry C, 111(44), 16437-16444. doi:10.1021/jp074066t

Shen, W.-J., Ichihashi, Y., Ando, H., Okumura, M., Haruta, M., & Matsumura, Y. (2001). Influence of palladium precursors on methanol synthesis from CO hydrogenation over Pd/CeO2 catalysts prepared by deposition–precipitation method. Applied Catalysis A: General, 217(1-2), 165-172. doi:10.1016/s0926-860x(01)00606-8

Bugaev, A. L., Guda, A. A., Lazzarini, A., Lomachenko, K. A., Groppo, E., Pellegrini, R., … Lamberti, C. (2017). In situ formation of hydrides and carbides in palladium catalyst: When XANES is better than EXAFS and XRD. Catalysis Today, 283, 119-126. doi:10.1016/j.cattod.2016.02.065

Nashner, M. S., Frenkel, A. I., Adler, D. L., Shapley, J. R., & Nuzzo, R. G. (1997). Structural Characterization of Carbon-Supported Platinum−Ruthenium Nanoparticles from the Molecular Cluster Precursor PtRu5C(CO)16. Journal of the American Chemical Society, 119(33), 7760-7771. doi:10.1021/ja971039f

Kang, J. H., Menard, L. D., Nuzzo, R. G., & Frenkel, A. I. (2006). Unusual Non-Bulk Properties in Nanoscale Materials:  Thermal Metal−Metal Bond Contraction of γ-Alumina-Supported Pt Catalysts. Journal of the American Chemical Society, 128(37), 12068-12069. doi:10.1021/ja064207p

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem