- -

An in situ XAS study of the activation of precursor-dependent Pd nanoparticles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An in situ XAS study of the activation of precursor-dependent Pd nanoparticles

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Wittee Lopes, Christian es_ES
dc.contributor.author Cerrillo, José Luis es_ES
dc.contributor.author Palomares Gimeno, Antonio Eduardo es_ES
dc.contributor.author Rey Garcia, Fernando es_ES
dc.contributor.author Agostini, G. es_ES
dc.date.accessioned 2020-05-20T03:01:30Z
dc.date.available 2020-05-20T03:01:30Z
dc.date.issued 2018-05-14 es_ES
dc.identifier.issn 1463-9076 es_ES
dc.identifier.uri http://hdl.handle.net/10251/143781
dc.description.abstract [EN] The activation of precursor-dependent Pd nanoparticles was comprehensively followed by in situ X-ray absorption spectroscopy on two inorganic supports for rationalizing the final catalytic activity. Two series of Pd-based catalysts (7 wt% Pd) were prepared by impregnation of gamma-Al2O3 and activated carbon supports varying the metal precursor (Pd(NO3)(2), PdCl2 and Pd(OAc)(2)). The most relevant physicochemical properties of the studied catalysts were determined by several techniques including ICP-OES, XRD, N-2 adsorption and XAS. The results indicate that the thermal stability of the metal precursor plays an important role in the size and speciation of the formed Pd nanoparticles after the activation process. The Cl-based precursor, which presents high thermal stability, passes through a PdOxCly mixed phase when submitted to calcination on Pd/Al2O3 and leaves Cl-species after metal reduction on Pd/C (which can be detrimental to catalytic reactions). Differently, Pd(OAc)(2) and Pd(NO3)(2) promote the formation of larger species due to different precursor decomposition pathways. Ordered PdO is observed even before calcination when Pd(NO3)(2) was used as a metallic source, which translates into large nanoparticles after reduction in H-2. By using the average coordination numbers of Pd species obtained from EXAFS data of the as-reduced catalysts, a correlation was observed comparing the three precursors: PdCl2 generates smaller nanoparticles than Pd(OAc)(2), which in turn generates smaller nanoparticles than Pd(NO3)(2), regardless of the support used for catalyst preparation. es_ES
dc.description.sponsorship The authors thank the Spanish Ministry of Economy and Competitiveness through MAT2015-71842-P (MINECO/FEDER) and SEV-2016-0683 projects for the financial support. We gratefully acknowledge ALBA synchrotron for allocating beamtime (proposal 2015091414), Carlo Marini and CLAESS beamline staff for their help and technical support during our experiment. C. W. Lopes (Science without Frontiers - Process no. 13191/13-6) thanks CAPES for a predoctoral fellowship. J.L. Cerrillo wishes to thank MINECO for the Severo Ochoa contract for PhD formation (SVP-2014-068600). es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Physical Chemistry Chemical Physics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification INGENIERIA QUIMICA es_ES
dc.title An in situ XAS study of the activation of precursor-dependent Pd nanoparticles es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/C8CP00517F es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CAPES//13191%2F13-6/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SVP-2014-068600/ES/SVP-2014-068600/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-71842-P/ES/SINTESIS Y CARACTERIZACION AVANZADA DE NUEVOS MATERIALES ZEOLITICOS Y APLICACIONES EN ADSORCION, MEDIOAMBIENTE Y EN LA CONSERVACION DE ALIMENTOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.description.bibliographicCitation Wittee Lopes, C.; Cerrillo, JL.; Palomares Gimeno, AE.; Rey Garcia, F.; Agostini, G. (2018). An in situ XAS study of the activation of precursor-dependent Pd nanoparticles. Physical Chemistry Chemical Physics. 20(18):12700-12709. https://doi.org/10.1039/C8CP00517F es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/C8CP00517F es_ES
dc.description.upvformatpinicio 12700 es_ES
dc.description.upvformatpfin 12709 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 18 es_ES
dc.identifier.pmid 29697116 es_ES
dc.relation.pasarela S\356558 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Coordenaçao de Aperfeiçoamento de Pessoal de Nível Superior, Brasil es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Chen, X., Huo, X., Liu, J., Wang, Y., Werth, C. J., & Strathmann, T. J. (2017). Exploring beyond palladium: Catalytic reduction of aqueous oxyanion pollutants with alternative platinum group metals and new mechanistic implications. Chemical Engineering Journal, 313, 745-752. doi:10.1016/j.cej.2016.12.058 es_ES
dc.description.references Lu, C., Wang, M., Feng, Z., Qi, Y., Feng, F., Ma, L., … Li, X. (2017). A phosphorus–carbon framework over activated carbon supported palladium nanoparticles for the chemoselective hydrogenation of para-chloronitrobenzene. Catalysis Science & Technology, 7(7), 1581-1589. doi:10.1039/c7cy00157f es_ES
dc.description.references Soares, O. S. G. P., Freitas, C. M. A. S., Fonseca, A. M., Órfão, J. J. M., Pereira, M. F. R., & Neves, I. C. (2016). Bromate reduction in water promoted by metal catalysts prepared over faujasite zeolite. Chemical Engineering Journal, 291, 199-205. doi:10.1016/j.cej.2016.01.093 es_ES
dc.description.references Yaseneva, P., Marti, C. F., Palomares, E., Fan, X., Morgan, T., Perez, P. S., … Lapkin, A. A. (2014). Efficient reduction of bromates using carbon nanofibre supported catalysts: Experimental and a comparative life cycle assessment study. Chemical Engineering Journal, 248, 230-241. doi:10.1016/j.cej.2014.03.034 es_ES
dc.description.references Kalmykov, P. A., & Klyuev, M. V. (2016). A study of palladium hydrogenation catalysts based on nanodiamonds and activated carbon. Petroleum Chemistry, 56(1), 27-32. doi:10.1134/s0965544115080095 es_ES
dc.description.references Gaspar, A. B., & Dieguez, L. C. (2000). Dispersion stability and methylcyclopentane hydrogenolysis in Pd/Al2O3 catalysts. Applied Catalysis A: General, 201(2), 241-251. doi:10.1016/s0926-860x(00)00442-7 es_ES
dc.description.references Khudorozhkov, A. K., Chetyrin, I. A., Bukhtiyarov, A. V., Prosvirin, I. P., & Bukhtiyarov, V. I. (2017). Propane Oxidation Over Pd/Al2O3: Kinetic and In Situ XPS Study. Topics in Catalysis, 60(1-2), 190-197. doi:10.1007/s11244-017-0733-0 es_ES
dc.description.references Vedyagin, A. A., Volodin, A. M., Kenzhin, R. M., Stoyanovskii, V. O., Rogov, V. A., Medvedev, D. A., & Mishakov, I. V. (2017). Characterization and study on the thermal aging behavior of palladium–alumina catalysts. Journal of Thermal Analysis and Calorimetry, 130(3), 1865-1874. doi:10.1007/s10973-017-6530-y es_ES
dc.description.references Wang, C., Yang, F., Yang, W., Ren, L., Zhang, Y., Jia, X., … Li, Y. (2015). PdO nanoparticles enhancing the catalytic activity of Pd/carbon nanotubes for 4-nitrophenol reduction. RSC Advances, 5(35), 27526-27532. doi:10.1039/c4ra16792a es_ES
dc.description.references Di Natale, F., Orefice, M., La Motta, F., Erto, A., & Lancia, A. (2017). Unveiling the potentialities of activated carbon in recovering palladium from model leaching solutions. Separation and Purification Technology, 174, 183-193. doi:10.1016/j.seppur.2016.10.022 es_ES
dc.description.references Toebes, M. L., van Dillen, J. A., & de Jong, K. P. (2001). Synthesis of supported palladium catalysts. Journal of Molecular Catalysis A: Chemical, 173(1-2), 75-98. doi:10.1016/s1381-1169(01)00146-7 es_ES
dc.description.references Munnik, P., de Jongh, P. E., & de Jong, K. P. (2015). Recent Developments in the Synthesis of Supported Catalysts. Chemical Reviews, 115(14), 6687-6718. doi:10.1021/cr500486u es_ES
dc.description.references Moulijn, J. ., van Diepen, A. ., & Kapteijn, F. (2001). Catalyst deactivation: is it predictable? Applied Catalysis A: General, 212(1-2), 3-16. doi:10.1016/s0926-860x(00)00842-5 es_ES
dc.description.references Agostini, G., Lamberti, C., Pellegrini, R., Leofanti, G., Giannici, F., Longo, A., & Groppo, E. (2013). Effect of Pre-Reduction on the Properties and the Catalytic Activity of Pd/Carbon Catalysts: A Comparison with Pd/Al2O3. ACS Catalysis, 4(1), 187-194. doi:10.1021/cs400507m es_ES
dc.description.references Cho, S. J., & Kang, S. K. (2000). Reversible Structural Transformation of Palladium Catalyst Supported on La−Al2O3Probed with X-ray Absorption Fine Structure. The Journal of Physical Chemistry B, 104(34), 8124-8128. doi:10.1021/jp991857p es_ES
dc.description.references Harada, M., & Inada, Y. (2009). In Situ Time-Resolved XAFS Studies of Metal Particle Formation by Photoreduction in Polymer Solutions. Langmuir, 25(11), 6049-6061. doi:10.1021/la900550t es_ES
dc.description.references Singh, J., Lamberti, C., & van Bokhoven, J. A. (2010). Advanced X-ray absorption and emission spectroscopy: in situ catalytic studies. Chemical Society Reviews, 39(12), 4754. doi:10.1039/c0cs00054j es_ES
dc.description.references D. C. Koningsberger and R.Prins , X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES , Wiley , 1988 es_ES
dc.description.references Wang, J., Wang, Q., Jiang, X., Liu, Z., Yang, W., & Frenkel, A. I. (2014). Determination of Nanoparticle Size by Measuring the Metal–Metal Bond Length: The Case of Palladium Hydride. The Journal of Physical Chemistry C, 119(1), 854-861. doi:10.1021/jp510730a es_ES
dc.description.references Agostini, G., Pellegrini, R., Leofanti, G., Bertinetti, L., Bertarione, S., Groppo, E., … Lamberti, C. (2009). Determination of the Particle Size, Available Surface Area, and Nature of Exposed Sites for Silica−Alumina-Supported Pd Nanoparticles: A Multitechnical Approach. The Journal of Physical Chemistry C, 113(24), 10485-10492. doi:10.1021/jp9023712 es_ES
dc.description.references Frenkel, A. I., Hills, C. W., & Nuzzo, R. G. (2001). A View from the Inside:  Complexity in the Atomic Scale Ordering of Supported Metal Nanoparticles. The Journal of Physical Chemistry B, 105(51), 12689-12703. doi:10.1021/jp012769j es_ES
dc.description.references Frenkel, A. I. (1999). Solving the structure of nanoparticles by multiple-scattering EXAFS analysis. Journal of Synchrotron Radiation, 6(3), 293-295. doi:10.1107/s0909049598017786 es_ES
dc.description.references Agostini, G., Piovano, A., Bertinetti, L., Pellegrini, R., Leofanti, G., Groppo, E., & Lamberti, C. (2014). Effect of Different Face Centered Cubic Nanoparticle Distributions on Particle Size and Surface Area Determination: A Theoretical Study. The Journal of Physical Chemistry C, 118(8), 4085-4094. doi:10.1021/jp4091014 es_ES
dc.description.references Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2), 309-319. doi:10.1021/ja01269a023 es_ES
dc.description.references Sing, K. S. W., Rouquerol, F., Llewellyn, P., & Rouquerol, J. (2014). Assessment of Microporosity. Adsorption by Powders and Porous Solids, 303-320. doi:10.1016/b978-0-08-097035-6.00009-7 es_ES
dc.description.references Sing, K. S. W., Rouquerol, F., Rouquerol, J., & Llewellyn, P. (2014). Assessment of Mesoporosity. Adsorption by Powders and Porous Solids, 269-302. doi:10.1016/b978-0-08-097035-6.00008-5 es_ES
dc.description.references Simonelli, L., Marini, C., Olszewski, W., ��vila P��rez, M., Ramanan, N., Guilera, G., … Klementiev, K. (2016). CL��SS: The hard X-ray absorption beamline of the ALBA CELLS synchrotron. Cogent Physics, 3(1). doi:10.1080/23311940.2016.1231987 es_ES
dc.description.references Ravel, B., & Newville, M. (2005). ATHENA,ARTEMIS,HEPHAESTUS: data analysis for X-ray absorption spectroscopy usingIFEFFIT. Journal of Synchrotron Radiation, 12(4), 537-541. doi:10.1107/s0909049505012719 es_ES
dc.description.references Yazawa, Y., Yoshida, H., Takagi, N., Komai, S., Satsuma, A., & Hattori, T. (1998). Oxidation state of palladium as a factor controlling catalytic activity of Pd/SiO2–Al2O3 in propane combustion. Applied Catalysis B: Environmental, 19(3-4), 261-266. doi:10.1016/s0926-3373(98)00080-0 es_ES
dc.description.references Lin, C.-M., Hung, T.-L., Huang, Y.-H., Wu, K.-T., Tang, M.-T., Lee, C.-H., … Chen, Y. Y. (2007). Size-dependent lattice structure of palladium studied by x-ray absorption spectroscopy. Physical Review B, 75(12). doi:10.1103/physrevb.75.125426 es_ES
dc.description.references Fernández-García, M. (2002). XANES analysis of catalytic systems under reaction conditions. Catalysis Reviews, 44(1), 59-121. doi:10.1081/cr-120001459 es_ES
dc.description.references Agostini, G., Groppo, E., Piovano, A., Pellegrini, R., Leofanti, G., & Lamberti, C. (2010). Preparation of Supported Pd Catalysts: From the Pd Precursor Solution to the Deposited Pd2+Phase. Langmuir, 26(13), 11204-11211. doi:10.1021/la1005117 es_ES
dc.description.references Kim, S.-J., Lemaux, S., Demazeau, G., Kim, J.-Y., & Choy, J.-H. (2002). X-Ray absorption spectroscopic study on LaPdO3. Journal of Materials Chemistry, 12(4), 995-1000. doi:10.1039/b106795h es_ES
dc.description.references Groppo, E., Liu, W., Zavorotynska, O., Agostini, G., Spoto, G., Bordiga, S., … Zecchina, A. (2010). Subnanometric Pd Particles Stabilized Inside Highly Cross-Linked Polymeric Supports. Chemistry of Materials, 22(7), 2297-2308. doi:10.1021/cm903176d es_ES
dc.description.references Góralski, J., Szczepaniak, B., Grams, J., Maniukiewicz, W., & Paryjczak, T. (2007). Characteristic of physicochemical properties of Pd/MgO catalysts used in the hydrodechlorination process with CCI4. Polish Journal of Chemical Technology, 9(3), 77-80. doi:10.2478/v10026-007-0059-y es_ES
dc.description.references Agostini, G., Groppo, E., Bordiga, S., Zecchina, A., Prestipino, C., D’Acapito, F., … Lamberti, C. (2007). Reactivity of Cr Species Grafted on SiO2/Si(100) Surface:  A Reflection Extended X-ray Absorption Fine Structure Study down to the Submonolayer Regime. The Journal of Physical Chemistry C, 111(44), 16437-16444. doi:10.1021/jp074066t es_ES
dc.description.references Shen, W.-J., Ichihashi, Y., Ando, H., Okumura, M., Haruta, M., & Matsumura, Y. (2001). Influence of palladium precursors on methanol synthesis from CO hydrogenation over Pd/CeO2 catalysts prepared by deposition–precipitation method. Applied Catalysis A: General, 217(1-2), 165-172. doi:10.1016/s0926-860x(01)00606-8 es_ES
dc.description.references Bugaev, A. L., Guda, A. A., Lazzarini, A., Lomachenko, K. A., Groppo, E., Pellegrini, R., … Lamberti, C. (2017). In situ formation of hydrides and carbides in palladium catalyst: When XANES is better than EXAFS and XRD. Catalysis Today, 283, 119-126. doi:10.1016/j.cattod.2016.02.065 es_ES
dc.description.references Nashner, M. S., Frenkel, A. I., Adler, D. L., Shapley, J. R., & Nuzzo, R. G. (1997). Structural Characterization of Carbon-Supported Platinum−Ruthenium Nanoparticles from the Molecular Cluster Precursor PtRu5C(CO)16. Journal of the American Chemical Society, 119(33), 7760-7771. doi:10.1021/ja971039f es_ES
dc.description.references Kang, J. H., Menard, L. D., Nuzzo, R. G., & Frenkel, A. I. (2006). Unusual Non-Bulk Properties in Nanoscale Materials:  Thermal Metal−Metal Bond Contraction of γ-Alumina-Supported Pt Catalysts. Journal of the American Chemical Society, 128(37), 12068-12069. doi:10.1021/ja064207p es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem