- -

Conservation of thermospermine synthase activity in vascular and non-vascular plants

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Conservation of thermospermine synthase activity in vascular and non-vascular plants

Show full item record

Solé-Gil, A.; Hernández-García, J.; López-Gresa, MP.; Blazquez Rodriguez, MA.; Agusti Feliu, J. (2019). Conservation of thermospermine synthase activity in vascular and non-vascular plants. Frontiers in Plant Science. 10:1-10. https://doi.org/10.3389/fpls.2019.00663

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143782

Files in this item

Item Metadata

Title: Conservation of thermospermine synthase activity in vascular and non-vascular plants
Author: Solé-Gil, Anna Hernández-García, Jorge López-Gresa, María Pilar BLAZQUEZ RODRIGUEZ, MIGUEL ANGEL AGUSTI FELIU, JAVIER
UPV Unit: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Issued date:
Abstract:
[EN] In plants, the only confirmed function for thermospermine is regulating xylem cells maturation. However, genes putatively encoding thermospermine synthases have been identified in the genomes of both vascular and ...[+]
Subjects: Plants , Polyamines , Thermospermine , Evolution , Development
Copyrigths: Reconocimiento (by)
Source:
Frontiers in Plant Science. (eissn: 1664-462X )
DOI: 10.3389/fpls.2019.00663
Publisher:
Frontiers Media SA
Publisher version: https://doi.org/10.3389/fpls.2019.00663
Thanks:
This work in the laboratories was funded by grants BFU2016-80621-P and BIO2016-79147-R of the Spanish Ministry of Economy, Industry and Competitiveness. AS-G and JH-G are recipients of Fellowships of the Spanish Ministry ...[+]
Type: Artículo

References

Ashton, N. W., & Cove, D. J. (1977). The isolation and preliminary characterisation of auxotrophic and analogue resistant mutants of the moss, Physcomitrella patens. Molecular and General Genetics MGG, 154(1), 87-95. doi:10.1007/bf00265581

Baima, S., Forte, V., Possenti, M., Peñalosa, A., Leoni, G., Salvi, S., … Morelli, G. (2014). Negative Feedback Regulation of Auxin Signaling by ATHB8/ACL5–BUD2 Transcription Module. Molecular Plant, 7(6), 1006-1025. doi:10.1093/mp/ssu051

Cai, Q., Fukushima, H., Yamamoto, M., Ishii, N., Sakamoto, T., Kurata, T., … Takahashi, T. (2016). TheSAC51Family Plays a Central Role in Thermospermine Responses in Arabidopsis. Plant and Cell Physiology, 57(8), 1583-1592. doi:10.1093/pcp/pcw113 [+]
Ashton, N. W., & Cove, D. J. (1977). The isolation and preliminary characterisation of auxotrophic and analogue resistant mutants of the moss, Physcomitrella patens. Molecular and General Genetics MGG, 154(1), 87-95. doi:10.1007/bf00265581

Baima, S., Forte, V., Possenti, M., Peñalosa, A., Leoni, G., Salvi, S., … Morelli, G. (2014). Negative Feedback Regulation of Auxin Signaling by ATHB8/ACL5–BUD2 Transcription Module. Molecular Plant, 7(6), 1006-1025. doi:10.1093/mp/ssu051

Cai, Q., Fukushima, H., Yamamoto, M., Ishii, N., Sakamoto, T., Kurata, T., … Takahashi, T. (2016). TheSAC51Family Plays a Central Role in Thermospermine Responses in Arabidopsis. Plant and Cell Physiology, 57(8), 1583-1592. doi:10.1093/pcp/pcw113

Chen, D., Shao, Q., Yin, L., Younis, A., & Zheng, B. (2019). Polyamine Function in Plants: Metabolism, Regulation on Development, and Roles in Abiotic Stress Responses. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01945

Clay, N. K., & Nelson, T. (2005). Arabidopsis thickvein Mutation Affects Vein Thickness and Organ Vascularization, and Resides in a Provascular Cell-Specific Spermine Synthase Involved in Vein Definition and in Polar Auxin Transport. Plant Physiology, 138(2), 767-777. doi:10.1104/pp.104.055756

Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2011). ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics, 27(8), 1164-1165. doi:10.1093/bioinformatics/btr088

De Rybel, B., Adibi, M., Breda, A. S., Wendrich, J. R., Smit, M. E., Novák, O., … Weijers, D. (2014). Integration of growth and patterning during vascular tissue formation in Arabidopsis. Science, 345(6197), 1255215. doi:10.1126/science.1255215

De Rybel, B., Möller, B., Yoshida, S., Grabowicz, I., Barbier de Reuille, P., Boeren, S., … Weijers, D. (2013). A bHLH Complex Controls Embryonic Vascular Tissue Establishment and Indeterminate Growth in Arabidopsis. Developmental Cell, 24(4), 426-437. doi:10.1016/j.devcel.2012.12.013

Gonzalez, M. E., Marco, F., Minguet, E. G., Carrasco-Sorli, P., Blázquez, M. A., Carbonell, J., … Pieckenstain, F. L. (2011). Perturbation of spermine synthase Gene Expression and Transcript Profiling Provide New Insights on the Role of the Tetraamine Spermine in Arabidopsis Defense against Pseudomonas viridiflava. Plant Physiology, 156(4), 2266-2277. doi:10.1104/pp.110.171413

Gouy, M., Guindon, S., & Gascuel, O. (2009). SeaView Version 4: A Multiplatform Graphical User Interface for Sequence Alignment and Phylogenetic Tree Building. Molecular Biology and Evolution, 27(2), 221-224. doi:10.1093/molbev/msp259

Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology, 59(3), 307-321. doi:10.1093/sysbio/syq010

Hanfrey, C., Elliott, K. A., Franceschetti, M., Mayer, M. J., Illingworth, C., & Michael, A. J. (2005). A Dual Upstream Open Reading Frame-based Autoregulatory Circuit Controlling Polyamine-responsive Translation. Journal of Biological Chemistry, 280(47), 39229-39237. doi:10.1074/jbc.m509340200

Hanfrey, C., Franceschetti, M., Mayer, M. J., Illingworth, C., & Michael, A. J. (2002). Abrogation of Upstream Open Reading Frame-mediated Translational Control of a PlantS-Adenosylmethionine Decarboxylase Results in Polyamine Disruption and Growth Perturbations. Journal of Biological Chemistry, 277(46), 44131-44139. doi:10.1074/jbc.m206161200

Hanzawa, Y., Takahashi, T., & Komeda, Y. (1997). ACL5: an Arabidopsis gene required for internodal elongation after flowering. The Plant Journal, 12(4), 863-874. doi:10.1046/j.1365-313x.1997.12040863.x

Hanzawa, Y. (2000). ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. The EMBO Journal, 19(16), 4248-4256. doi:10.1093/emboj/19.16.4248

Hashimoto, T., Tamaki, K., Suzuki, K. -i., & Yamada, Y. (1998). Molecular Cloning of Plant Spermidine Synthases. Plant and Cell Physiology, 39(1), 73-79. doi:10.1093/oxfordjournals.pcp.a029291

Imai, A. (2006). The dwarf phenotype of the Arabidopsis acl5 mutant is suppressed by a mutation in an upstream ORF of a bHLH gene. Development, 133(18), 3575-3585. doi:10.1242/dev.02535

Imai, A., Matsuyama, T., Hanzawa, Y., Akiyama, T., Tamaoki, M., Saji, H., … Takahashi, T. (2004). Spermidine Synthase Genes Are Essential for Survival of Arabidopsis. Plant Physiology, 135(3), 1565-1573. doi:10.1104/pp.104.041699

Kakehi, J. -i., Kuwashiro, Y., Niitsu, M., & Takahashi, T. (2008). Thermospermine is Required for Stem Elongation in Arabidopsis thaliana. Plant and Cell Physiology, 49(9), 1342-1349. doi:10.1093/pcp/pcn109

Katayama, H., Iwamoto, K., Kariya, Y., Asakawa, T., Kan, T., Fukuda, H., & Ohashi-Ito, K. (2015). A Negative Feedback Loop Controlling bHLH Complexes Is Involved in Vascular Cell Division and Differentiation in the Root Apical Meristem. Current Biology, 25(23), 3144-3150. doi:10.1016/j.cub.2015.10.051

Knott, J. M., Römer, P., & Sumper, M. (2007). Putative spermine synthases fromThalassiosira pseudonanaandArabidopsis thalianasynthesize thermospermine rather than spermine. FEBS Letters, 581(16), 3081-3086. doi:10.1016/j.febslet.2007.05.074

Marina, M., Sirera, F. V., Rambla, J. L., Gonzalez, M. E., Blázquez, M. A., Carbonell, J., … Ruiz, O. A. (2013). Thermospermine catabolism increases Arabidopsis thaliana resistance to Pseudomonas viridiflava. Journal of Experimental Botany, 64(5), 1393-1402. doi:10.1093/jxb/ert012

Michael, A. J. (2016). Polyamines in Eukaryotes, Bacteria, and Archaea. Journal of Biological Chemistry, 291(29), 14896-14903. doi:10.1074/jbc.r116.734780

Milhinhos, A., Prestele, J., Bollhöner, B., Matos, A., Vera-Sirera, F., Rambla, J. L., … Miguel, C. M. (2013). Thermospermine levels are controlled by an auxin-dependent feedback loop mechanism inPopulusxylem. The Plant Journal, 75(4), 685-698. doi:10.1111/tpj.12231

Minguet, E. G., Vera-Sirera, F., Marina, A., Carbonell, J., & Blazquez, M. A. (2008). Evolutionary Diversification in Polyamine Biosynthesis. Molecular Biology and Evolution, 25(10), 2119-2128. doi:10.1093/molbev/msn161

Muniz, L., Minguet, E. G., Singh, S. K., Pesquet, E., Vera-Sirera, F., Moreau-Courtois, C. L., … Tuominen, H. (2008). ACAULIS5 controls Arabidopsis xylem specification through the prevention of premature cell death. Development, 135(15), 2573-2582. doi:10.1242/dev.019349

Naka, Y., Watanabe, K., Sagor, G. H. M., Niitsu, M., Pillai, M. A., Kusano, T., & Takahashi, Y. (2010). Quantitative analysis of plant polyamines including thermospermine during growth and salinity stress. Plant Physiology and Biochemistry, 48(7), 527-533. doi:10.1016/j.plaphy.2010.01.013

Panicot, M., Minguet, E. G., Ferrando, A., Alcázar, R., Blázquez, M. A., Carbonell, J., … Tiburcio, A. F. (2002). A Polyamine Metabolon Involving Aminopropyl Transferase Complexes in Arabidopsis. The Plant Cell, 14(10), 2539-2551. doi:10.1105/tpc.004077

Pegg, A. E., & Michael, A. J. (2009). Spermine synthase. Cellular and Molecular Life Sciences, 67(1), 113-121. doi:10.1007/s00018-009-0165-5

Rambla, J. L., Vera-Sirera, F., Blázquez, M. A., Carbonell, J., & Granell, A. (2010). Quantitation of biogenic tetraamines in Arabidopsis thaliana. Analytical Biochemistry, 397(2), 208-211. doi:10.1016/j.ab.2009.10.013

Sagor, G. H. M., Berberich, T., Takahashi, Y., Niitsu, M., & Kusano, T. (2012). The polyamine spermine protects Arabidopsis from heat stress-induced damage by increasing expression of heat shock-related genes. Transgenic Research, 22(3), 595-605. doi:10.1007/s11248-012-9666-3

Sarrion-Perdigones, A., Falconi, E. E., Zandalinas, S. I., Juárez, P., Fernández-del-Carmen, A., Granell, A., & Orzaez, D. (2011). GoldenBraid: An Iterative Cloning System for Standardized Assembly of Reusable Genetic Modules. PLoS ONE, 6(7), e21622. doi:10.1371/journal.pone.0021622

Sekula, B., & Dauter, Z. (2018). Crystal structure of thermospermine synthase from Medicago truncatula and substrate discriminatory features of plant aminopropyltransferases. Biochemical Journal, 475(4), 787-802. doi:10.1042/bcj20170900

Siebers, T., Catarino, B., & Agusti, J. (2016). Identification and expression analyses of new potential regulators of xylem development and cambium activity in cassava (Manihot esculenta). Planta, 245(3), 539-548. doi:10.1007/s00425-016-2623-2

Tabor, C. W., & Tabor, H. (1984). Polyamines. Annual Review of Biochemistry, 53(1), 749-790. doi:10.1146/annurev.bi.53.070184.003533

Takahashi, T., & Kakehi, J.-I. (2009). Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Annals of Botany, 105(1), 1-6. doi:10.1093/aob/mcp259

Takano, A., Kakehi, J.-I., & Takahashi, T. (2012). Thermospermine is Not a Minor Polyamine in the Plant Kingdom. Plant and Cell Physiology, 53(4), 606-616. doi:10.1093/pcp/pcs019

Teuber, M., Azemi, M. E., Namjoyan, F., Meier, A.-C., Wodak, A., Brandt, W., & Dräger, B. (2007). Putrescine N-methyltransferases—a structure–function analysis. Plant Molecular Biology, 63(6), 787-801. doi:10.1007/s11103-006-9126-7

Vera-Sirera, F., De Rybel, B., Úrbez, C., Kouklas, E., Pesquera, M., Álvarez-Mahecha, J. C., … Blázquez, M. A. (2015). A bHLH-Based Feedback Loop Restricts Vascular Cell Proliferation in Plants. Developmental Cell, 35(4), 432-443. doi:10.1016/j.devcel.2015.10.022

Vera-Sirera, F., Minguet, E. G., Singh, S. K., Ljung, K., Tuominen, H., Blázquez, M. A., & Carbonell, J. (2010). Role of polyamines in plant vascular development. Plant Physiology and Biochemistry, 48(7), 534-539. doi:10.1016/j.plaphy.2010.01.011

Vuosku, J., Karppinen, K., Muilu-Mäkelä, R., Kusano, T., Sagor, G. H. M., Avia, K., … Sarjala, T. (2018). Scots pine aminopropyltransferases shed new light on evolution of the polyamine biosynthesis pathway in seed plants. Annals of Botany, 121(6), 1243-1256. doi:10.1093/aob/mcy012

Wu, H., Min, J., Ikeguchi, Y., Zeng, H., Dong, A., Loppnau, P., … Plotnikov, A. N. (2007). Structure and Mechanism of Spermidine Synthases†. Biochemistry, 46(28), 8331-8339. doi:10.1021/bi602498k

Yamaguchi, K., Takahashi, Y., Berberich, T., Imai, A., Miyazaki, A., Takahashi, T., … Kusano, T. (2006). The polyamine spermine protects against high salt stress inArabidopsis thaliana. FEBS Letters, 580(30), 6783-6788. doi:10.1016/j.febslet.2006.10.078

Yamaguchi, K., Takahashi, Y., Berberich, T., Imai, A., Takahashi, T., Michael, A. J., & Kusano, T. (2007). A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochemical and Biophysical Research Communications, 352(2), 486-490. doi:10.1016/j.bbrc.2006.11.041

Yoshimoto, K., Takamura, H., Kadota, I., Motose, H., & Takahashi, T. (2016). Chemical control of xylem differentiation by thermospermine, xylemin and auxin. Scientific Reports, 6(1). doi:10.1038/srep21487

[-]

This item appears in the following Collection(s)

Show full item record