- -

Conservation of thermospermine synthase activity in vascular and non-vascular plants

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Conservation of thermospermine synthase activity in vascular and non-vascular plants

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Solé-Gil, Anna es_ES
dc.contributor.author Hernández-García, Jorge es_ES
dc.contributor.author López-Gresa, María Pilar es_ES
dc.contributor.author BLAZQUEZ RODRIGUEZ, MIGUEL ANGEL es_ES
dc.contributor.author AGUSTI FELIU, JAVIER es_ES
dc.date.accessioned 2020-05-20T03:01:34Z
dc.date.available 2020-05-20T03:01:34Z
dc.date.issued 2019-06-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/143782
dc.description.abstract [EN] In plants, the only confirmed function for thermospermine is regulating xylem cells maturation. However, genes putatively encoding thermospermine synthases have been identified in the genomes of both vascular and non-vascular plants. Here, we verify the activity of the thermospermine synthase genes and the presence of thermospermine in vascular and non-vascular land plants as well as in the aquatic plant Chlamydomonas reinhardtii. In addition, we provide information about differential content of thermospermine in diverse organs at different developmental stages in some vascular species that suggest that, although the major role of thermospermine in vascular plants is likely to be xylem development, other potential roles in development and/or responses to stress conditions could be associated to such polyamine. In summary, our results in vascular and non-vascular species indicate that the capacity to synthesize thermospermine is conserved throughout the entire plant kingdom. es_ES
dc.description.sponsorship This work in the laboratories was funded by grants BFU2016-80621-P and BIO2016-79147-R of the Spanish Ministry of Economy, Industry and Competitiveness. AS-G and JH-G are recipients of Fellowships of the Spanish Ministry of Science, Innovation and Universities BES-2017-080387 and of the Spanish Ministry of Education, Culture and Sport FPU15/01756, respectively. JA holds a Ramón y Cajal Contract RYC-2014-15752. es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Plant Science es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Plants es_ES
dc.subject Polyamines es_ES
dc.subject Thermospermine es_ES
dc.subject Evolution es_ES
dc.subject Development es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Conservation of thermospermine synthase activity in vascular and non-vascular plants es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fpls.2019.00663 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2016-79147-R/ES/IDENTIFICACION Y CARACTERIZACION DE NUEVOS REGULADORES DEL CAMBIUM/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2016-80621-P/ES/ANÁLISIS EVOLUTIVO DE UN 'HUB' FUNCIONAL EN PLANTAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Solé-Gil, A.; Hernández-García, J.; López-Gresa, MP.; Blazquez Rodriguez, MA.; Agusti Feliu, J. (2019). Conservation of thermospermine synthase activity in vascular and non-vascular plants. Frontiers in Plant Science. 10:1-10. https://doi.org/10.3389/fpls.2019.00663 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fpls.2019.00663 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.identifier.eissn 1664-462X es_ES
dc.identifier.pmid 31244864 es_ES
dc.identifier.pmcid PMC6579911 es_ES
dc.relation.pasarela S\389342 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Ministerio de Ciencia, Innovación y Universidades es_ES
dc.description.references Ashton, N. W., & Cove, D. J. (1977). The isolation and preliminary characterisation of auxotrophic and analogue resistant mutants of the moss, Physcomitrella patens. Molecular and General Genetics MGG, 154(1), 87-95. doi:10.1007/bf00265581 es_ES
dc.description.references Baima, S., Forte, V., Possenti, M., Peñalosa, A., Leoni, G., Salvi, S., … Morelli, G. (2014). Negative Feedback Regulation of Auxin Signaling by ATHB8/ACL5–BUD2 Transcription Module. Molecular Plant, 7(6), 1006-1025. doi:10.1093/mp/ssu051 es_ES
dc.description.references Cai, Q., Fukushima, H., Yamamoto, M., Ishii, N., Sakamoto, T., Kurata, T., … Takahashi, T. (2016). TheSAC51Family Plays a Central Role in Thermospermine Responses in Arabidopsis. Plant and Cell Physiology, 57(8), 1583-1592. doi:10.1093/pcp/pcw113 es_ES
dc.description.references Chen, D., Shao, Q., Yin, L., Younis, A., & Zheng, B. (2019). Polyamine Function in Plants: Metabolism, Regulation on Development, and Roles in Abiotic Stress Responses. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01945 es_ES
dc.description.references Clay, N. K., & Nelson, T. (2005). Arabidopsis thickvein Mutation Affects Vein Thickness and Organ Vascularization, and Resides in a Provascular Cell-Specific Spermine Synthase Involved in Vein Definition and in Polar Auxin Transport. Plant Physiology, 138(2), 767-777. doi:10.1104/pp.104.055756 es_ES
dc.description.references Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2011). ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics, 27(8), 1164-1165. doi:10.1093/bioinformatics/btr088 es_ES
dc.description.references De Rybel, B., Adibi, M., Breda, A. S., Wendrich, J. R., Smit, M. E., Novák, O., … Weijers, D. (2014). Integration of growth and patterning during vascular tissue formation in Arabidopsis. Science, 345(6197), 1255215. doi:10.1126/science.1255215 es_ES
dc.description.references De Rybel, B., Möller, B., Yoshida, S., Grabowicz, I., Barbier de Reuille, P., Boeren, S., … Weijers, D. (2013). A bHLH Complex Controls Embryonic Vascular Tissue Establishment and Indeterminate Growth in Arabidopsis. Developmental Cell, 24(4), 426-437. doi:10.1016/j.devcel.2012.12.013 es_ES
dc.description.references Gonzalez, M. E., Marco, F., Minguet, E. G., Carrasco-Sorli, P., Blázquez, M. A., Carbonell, J., … Pieckenstain, F. L. (2011). Perturbation of spermine synthase Gene Expression and Transcript Profiling Provide New Insights on the Role of the Tetraamine Spermine in Arabidopsis Defense against Pseudomonas viridiflava. Plant Physiology, 156(4), 2266-2277. doi:10.1104/pp.110.171413 es_ES
dc.description.references Gouy, M., Guindon, S., & Gascuel, O. (2009). SeaView Version 4: A Multiplatform Graphical User Interface for Sequence Alignment and Phylogenetic Tree Building. Molecular Biology and Evolution, 27(2), 221-224. doi:10.1093/molbev/msp259 es_ES
dc.description.references Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology, 59(3), 307-321. doi:10.1093/sysbio/syq010 es_ES
dc.description.references Hanfrey, C., Elliott, K. A., Franceschetti, M., Mayer, M. J., Illingworth, C., & Michael, A. J. (2005). A Dual Upstream Open Reading Frame-based Autoregulatory Circuit Controlling Polyamine-responsive Translation. Journal of Biological Chemistry, 280(47), 39229-39237. doi:10.1074/jbc.m509340200 es_ES
dc.description.references Hanfrey, C., Franceschetti, M., Mayer, M. J., Illingworth, C., & Michael, A. J. (2002). Abrogation of Upstream Open Reading Frame-mediated Translational Control of a PlantS-Adenosylmethionine Decarboxylase Results in Polyamine Disruption and Growth Perturbations. Journal of Biological Chemistry, 277(46), 44131-44139. doi:10.1074/jbc.m206161200 es_ES
dc.description.references Hanzawa, Y., Takahashi, T., & Komeda, Y. (1997). ACL5: an Arabidopsis gene required for internodal elongation after flowering. The Plant Journal, 12(4), 863-874. doi:10.1046/j.1365-313x.1997.12040863.x es_ES
dc.description.references Hanzawa, Y. (2000). ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. The EMBO Journal, 19(16), 4248-4256. doi:10.1093/emboj/19.16.4248 es_ES
dc.description.references Hashimoto, T., Tamaki, K., Suzuki, K. -i., & Yamada, Y. (1998). Molecular Cloning of Plant Spermidine Synthases. Plant and Cell Physiology, 39(1), 73-79. doi:10.1093/oxfordjournals.pcp.a029291 es_ES
dc.description.references Imai, A. (2006). The dwarf phenotype of the Arabidopsis acl5 mutant is suppressed by a mutation in an upstream ORF of a bHLH gene. Development, 133(18), 3575-3585. doi:10.1242/dev.02535 es_ES
dc.description.references Imai, A., Matsuyama, T., Hanzawa, Y., Akiyama, T., Tamaoki, M., Saji, H., … Takahashi, T. (2004). Spermidine Synthase Genes Are Essential for Survival of Arabidopsis. Plant Physiology, 135(3), 1565-1573. doi:10.1104/pp.104.041699 es_ES
dc.description.references Kakehi, J. -i., Kuwashiro, Y., Niitsu, M., & Takahashi, T. (2008). Thermospermine is Required for Stem Elongation in Arabidopsis thaliana. Plant and Cell Physiology, 49(9), 1342-1349. doi:10.1093/pcp/pcn109 es_ES
dc.description.references Katayama, H., Iwamoto, K., Kariya, Y., Asakawa, T., Kan, T., Fukuda, H., & Ohashi-Ito, K. (2015). A Negative Feedback Loop Controlling bHLH Complexes Is Involved in Vascular Cell Division and Differentiation in the Root Apical Meristem. Current Biology, 25(23), 3144-3150. doi:10.1016/j.cub.2015.10.051 es_ES
dc.description.references Knott, J. M., Römer, P., & Sumper, M. (2007). Putative spermine synthases fromThalassiosira pseudonanaandArabidopsis thalianasynthesize thermospermine rather than spermine. FEBS Letters, 581(16), 3081-3086. doi:10.1016/j.febslet.2007.05.074 es_ES
dc.description.references Marina, M., Sirera, F. V., Rambla, J. L., Gonzalez, M. E., Blázquez, M. A., Carbonell, J., … Ruiz, O. A. (2013). Thermospermine catabolism increases Arabidopsis thaliana resistance to Pseudomonas viridiflava. Journal of Experimental Botany, 64(5), 1393-1402. doi:10.1093/jxb/ert012 es_ES
dc.description.references Michael, A. J. (2016). Polyamines in Eukaryotes, Bacteria, and Archaea. Journal of Biological Chemistry, 291(29), 14896-14903. doi:10.1074/jbc.r116.734780 es_ES
dc.description.references Milhinhos, A., Prestele, J., Bollhöner, B., Matos, A., Vera-Sirera, F., Rambla, J. L., … Miguel, C. M. (2013). Thermospermine levels are controlled by an auxin-dependent feedback loop mechanism inPopulusxylem. The Plant Journal, 75(4), 685-698. doi:10.1111/tpj.12231 es_ES
dc.description.references Minguet, E. G., Vera-Sirera, F., Marina, A., Carbonell, J., & Blazquez, M. A. (2008). Evolutionary Diversification in Polyamine Biosynthesis. Molecular Biology and Evolution, 25(10), 2119-2128. doi:10.1093/molbev/msn161 es_ES
dc.description.references Muniz, L., Minguet, E. G., Singh, S. K., Pesquet, E., Vera-Sirera, F., Moreau-Courtois, C. L., … Tuominen, H. (2008). ACAULIS5 controls Arabidopsis xylem specification through the prevention of premature cell death. Development, 135(15), 2573-2582. doi:10.1242/dev.019349 es_ES
dc.description.references Naka, Y., Watanabe, K., Sagor, G. H. M., Niitsu, M., Pillai, M. A., Kusano, T., & Takahashi, Y. (2010). Quantitative analysis of plant polyamines including thermospermine during growth and salinity stress. Plant Physiology and Biochemistry, 48(7), 527-533. doi:10.1016/j.plaphy.2010.01.013 es_ES
dc.description.references Panicot, M., Minguet, E. G., Ferrando, A., Alcázar, R., Blázquez, M. A., Carbonell, J., … Tiburcio, A. F. (2002). A Polyamine Metabolon Involving Aminopropyl Transferase Complexes in Arabidopsis. The Plant Cell, 14(10), 2539-2551. doi:10.1105/tpc.004077 es_ES
dc.description.references Pegg, A. E., & Michael, A. J. (2009). Spermine synthase. Cellular and Molecular Life Sciences, 67(1), 113-121. doi:10.1007/s00018-009-0165-5 es_ES
dc.description.references Rambla, J. L., Vera-Sirera, F., Blázquez, M. A., Carbonell, J., & Granell, A. (2010). Quantitation of biogenic tetraamines in Arabidopsis thaliana. Analytical Biochemistry, 397(2), 208-211. doi:10.1016/j.ab.2009.10.013 es_ES
dc.description.references Sagor, G. H. M., Berberich, T., Takahashi, Y., Niitsu, M., & Kusano, T. (2012). The polyamine spermine protects Arabidopsis from heat stress-induced damage by increasing expression of heat shock-related genes. Transgenic Research, 22(3), 595-605. doi:10.1007/s11248-012-9666-3 es_ES
dc.description.references Sarrion-Perdigones, A., Falconi, E. E., Zandalinas, S. I., Juárez, P., Fernández-del-Carmen, A., Granell, A., & Orzaez, D. (2011). GoldenBraid: An Iterative Cloning System for Standardized Assembly of Reusable Genetic Modules. PLoS ONE, 6(7), e21622. doi:10.1371/journal.pone.0021622 es_ES
dc.description.references Sekula, B., & Dauter, Z. (2018). Crystal structure of thermospermine synthase from Medicago truncatula and substrate discriminatory features of plant aminopropyltransferases. Biochemical Journal, 475(4), 787-802. doi:10.1042/bcj20170900 es_ES
dc.description.references Siebers, T., Catarino, B., & Agusti, J. (2016). Identification and expression analyses of new potential regulators of xylem development and cambium activity in cassava (Manihot esculenta). Planta, 245(3), 539-548. doi:10.1007/s00425-016-2623-2 es_ES
dc.description.references Tabor, C. W., & Tabor, H. (1984). Polyamines. Annual Review of Biochemistry, 53(1), 749-790. doi:10.1146/annurev.bi.53.070184.003533 es_ES
dc.description.references Takahashi, T., & Kakehi, J.-I. (2009). Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Annals of Botany, 105(1), 1-6. doi:10.1093/aob/mcp259 es_ES
dc.description.references Takano, A., Kakehi, J.-I., & Takahashi, T. (2012). Thermospermine is Not a Minor Polyamine in the Plant Kingdom. Plant and Cell Physiology, 53(4), 606-616. doi:10.1093/pcp/pcs019 es_ES
dc.description.references Teuber, M., Azemi, M. E., Namjoyan, F., Meier, A.-C., Wodak, A., Brandt, W., & Dräger, B. (2007). Putrescine N-methyltransferases—a structure–function analysis. Plant Molecular Biology, 63(6), 787-801. doi:10.1007/s11103-006-9126-7 es_ES
dc.description.references Vera-Sirera, F., De Rybel, B., Úrbez, C., Kouklas, E., Pesquera, M., Álvarez-Mahecha, J. C., … Blázquez, M. A. (2015). A bHLH-Based Feedback Loop Restricts Vascular Cell Proliferation in Plants. Developmental Cell, 35(4), 432-443. doi:10.1016/j.devcel.2015.10.022 es_ES
dc.description.references Vera-Sirera, F., Minguet, E. G., Singh, S. K., Ljung, K., Tuominen, H., Blázquez, M. A., & Carbonell, J. (2010). Role of polyamines in plant vascular development. Plant Physiology and Biochemistry, 48(7), 534-539. doi:10.1016/j.plaphy.2010.01.011 es_ES
dc.description.references Vuosku, J., Karppinen, K., Muilu-Mäkelä, R., Kusano, T., Sagor, G. H. M., Avia, K., … Sarjala, T. (2018). Scots pine aminopropyltransferases shed new light on evolution of the polyamine biosynthesis pathway in seed plants. Annals of Botany, 121(6), 1243-1256. doi:10.1093/aob/mcy012 es_ES
dc.description.references Wu, H., Min, J., Ikeguchi, Y., Zeng, H., Dong, A., Loppnau, P., … Plotnikov, A. N. (2007). Structure and Mechanism of Spermidine Synthases†. Biochemistry, 46(28), 8331-8339. doi:10.1021/bi602498k es_ES
dc.description.references Yamaguchi, K., Takahashi, Y., Berberich, T., Imai, A., Miyazaki, A., Takahashi, T., … Kusano, T. (2006). The polyamine spermine protects against high salt stress inArabidopsis thaliana. FEBS Letters, 580(30), 6783-6788. doi:10.1016/j.febslet.2006.10.078 es_ES
dc.description.references Yamaguchi, K., Takahashi, Y., Berberich, T., Imai, A., Takahashi, T., Michael, A. J., & Kusano, T. (2007). A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochemical and Biophysical Research Communications, 352(2), 486-490. doi:10.1016/j.bbrc.2006.11.041 es_ES
dc.description.references Yoshimoto, K., Takamura, H., Kadota, I., Motose, H., & Takahashi, T. (2016). Chemical control of xylem differentiation by thermospermine, xylemin and auxin. Scientific Reports, 6(1). doi:10.1038/srep21487 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem