Mostrar el registro sencillo del ítem
dc.contributor.author | Solé-Gil, Anna | es_ES |
dc.contributor.author | Hernández-García, Jorge | es_ES |
dc.contributor.author | López-Gresa, María Pilar | es_ES |
dc.contributor.author | BLAZQUEZ RODRIGUEZ, MIGUEL ANGEL | es_ES |
dc.contributor.author | AGUSTI FELIU, JAVIER | es_ES |
dc.date.accessioned | 2020-05-20T03:01:34Z | |
dc.date.available | 2020-05-20T03:01:34Z | |
dc.date.issued | 2019-06-11 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/143782 | |
dc.description.abstract | [EN] In plants, the only confirmed function for thermospermine is regulating xylem cells maturation. However, genes putatively encoding thermospermine synthases have been identified in the genomes of both vascular and non-vascular plants. Here, we verify the activity of the thermospermine synthase genes and the presence of thermospermine in vascular and non-vascular land plants as well as in the aquatic plant Chlamydomonas reinhardtii. In addition, we provide information about differential content of thermospermine in diverse organs at different developmental stages in some vascular species that suggest that, although the major role of thermospermine in vascular plants is likely to be xylem development, other potential roles in development and/or responses to stress conditions could be associated to such polyamine. In summary, our results in vascular and non-vascular species indicate that the capacity to synthesize thermospermine is conserved throughout the entire plant kingdom. | es_ES |
dc.description.sponsorship | This work in the laboratories was funded by grants BFU2016-80621-P and BIO2016-79147-R of the Spanish Ministry of Economy, Industry and Competitiveness. AS-G and JH-G are recipients of Fellowships of the Spanish Ministry of Science, Innovation and Universities BES-2017-080387 and of the Spanish Ministry of Education, Culture and Sport FPU15/01756, respectively. JA holds a Ramón y Cajal Contract RYC-2014-15752. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Frontiers Media SA | es_ES |
dc.relation.ispartof | Frontiers in Plant Science | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Plants | es_ES |
dc.subject | Polyamines | es_ES |
dc.subject | Thermospermine | es_ES |
dc.subject | Evolution | es_ES |
dc.subject | Development | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | Conservation of thermospermine synthase activity in vascular and non-vascular plants | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3389/fpls.2019.00663 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIO2016-79147-R/ES/IDENTIFICACION Y CARACTERIZACION DE NUEVOS REGULADORES DEL CAMBIUM/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2016-80621-P/ES/ANÁLISIS EVOLUTIVO DE UN 'HUB' FUNCIONAL EN PLANTAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Solé-Gil, A.; Hernández-García, J.; López-Gresa, MP.; Blazquez Rodriguez, MA.; Agusti Feliu, J. (2019). Conservation of thermospermine synthase activity in vascular and non-vascular plants. Frontiers in Plant Science. 10:1-10. https://doi.org/10.3389/fpls.2019.00663 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3389/fpls.2019.00663 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.identifier.eissn | 1664-462X | es_ES |
dc.identifier.pmid | 31244864 | es_ES |
dc.identifier.pmcid | PMC6579911 | es_ES |
dc.relation.pasarela | S\389342 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Ministerio de Ciencia, Innovación y Universidades | es_ES |
dc.description.references | Ashton, N. W., & Cove, D. J. (1977). The isolation and preliminary characterisation of auxotrophic and analogue resistant mutants of the moss, Physcomitrella patens. Molecular and General Genetics MGG, 154(1), 87-95. doi:10.1007/bf00265581 | es_ES |
dc.description.references | Baima, S., Forte, V., Possenti, M., Peñalosa, A., Leoni, G., Salvi, S., … Morelli, G. (2014). Negative Feedback Regulation of Auxin Signaling by ATHB8/ACL5–BUD2 Transcription Module. Molecular Plant, 7(6), 1006-1025. doi:10.1093/mp/ssu051 | es_ES |
dc.description.references | Cai, Q., Fukushima, H., Yamamoto, M., Ishii, N., Sakamoto, T., Kurata, T., … Takahashi, T. (2016). TheSAC51Family Plays a Central Role in Thermospermine Responses in Arabidopsis. Plant and Cell Physiology, 57(8), 1583-1592. doi:10.1093/pcp/pcw113 | es_ES |
dc.description.references | Chen, D., Shao, Q., Yin, L., Younis, A., & Zheng, B. (2019). Polyamine Function in Plants: Metabolism, Regulation on Development, and Roles in Abiotic Stress Responses. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01945 | es_ES |
dc.description.references | Clay, N. K., & Nelson, T. (2005). Arabidopsis thickvein Mutation Affects Vein Thickness and Organ Vascularization, and Resides in a Provascular Cell-Specific Spermine Synthase Involved in Vein Definition and in Polar Auxin Transport. Plant Physiology, 138(2), 767-777. doi:10.1104/pp.104.055756 | es_ES |
dc.description.references | Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2011). ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics, 27(8), 1164-1165. doi:10.1093/bioinformatics/btr088 | es_ES |
dc.description.references | De Rybel, B., Adibi, M., Breda, A. S., Wendrich, J. R., Smit, M. E., Novák, O., … Weijers, D. (2014). Integration of growth and patterning during vascular tissue formation in Arabidopsis. Science, 345(6197), 1255215. doi:10.1126/science.1255215 | es_ES |
dc.description.references | De Rybel, B., Möller, B., Yoshida, S., Grabowicz, I., Barbier de Reuille, P., Boeren, S., … Weijers, D. (2013). A bHLH Complex Controls Embryonic Vascular Tissue Establishment and Indeterminate Growth in Arabidopsis. Developmental Cell, 24(4), 426-437. doi:10.1016/j.devcel.2012.12.013 | es_ES |
dc.description.references | Gonzalez, M. E., Marco, F., Minguet, E. G., Carrasco-Sorli, P., Blázquez, M. A., Carbonell, J., … Pieckenstain, F. L. (2011). Perturbation of spermine synthase Gene Expression and Transcript Profiling Provide New Insights on the Role of the Tetraamine Spermine in Arabidopsis Defense against Pseudomonas viridiflava. Plant Physiology, 156(4), 2266-2277. doi:10.1104/pp.110.171413 | es_ES |
dc.description.references | Gouy, M., Guindon, S., & Gascuel, O. (2009). SeaView Version 4: A Multiplatform Graphical User Interface for Sequence Alignment and Phylogenetic Tree Building. Molecular Biology and Evolution, 27(2), 221-224. doi:10.1093/molbev/msp259 | es_ES |
dc.description.references | Guindon, S., Dufayard, J.-F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic Biology, 59(3), 307-321. doi:10.1093/sysbio/syq010 | es_ES |
dc.description.references | Hanfrey, C., Elliott, K. A., Franceschetti, M., Mayer, M. J., Illingworth, C., & Michael, A. J. (2005). A Dual Upstream Open Reading Frame-based Autoregulatory Circuit Controlling Polyamine-responsive Translation. Journal of Biological Chemistry, 280(47), 39229-39237. doi:10.1074/jbc.m509340200 | es_ES |
dc.description.references | Hanfrey, C., Franceschetti, M., Mayer, M. J., Illingworth, C., & Michael, A. J. (2002). Abrogation of Upstream Open Reading Frame-mediated Translational Control of a PlantS-Adenosylmethionine Decarboxylase Results in Polyamine Disruption and Growth Perturbations. Journal of Biological Chemistry, 277(46), 44131-44139. doi:10.1074/jbc.m206161200 | es_ES |
dc.description.references | Hanzawa, Y., Takahashi, T., & Komeda, Y. (1997). ACL5: an Arabidopsis gene required for internodal elongation after flowering. The Plant Journal, 12(4), 863-874. doi:10.1046/j.1365-313x.1997.12040863.x | es_ES |
dc.description.references | Hanzawa, Y. (2000). ACAULIS5, an Arabidopsis gene required for stem elongation, encodes a spermine synthase. The EMBO Journal, 19(16), 4248-4256. doi:10.1093/emboj/19.16.4248 | es_ES |
dc.description.references | Hashimoto, T., Tamaki, K., Suzuki, K. -i., & Yamada, Y. (1998). Molecular Cloning of Plant Spermidine Synthases. Plant and Cell Physiology, 39(1), 73-79. doi:10.1093/oxfordjournals.pcp.a029291 | es_ES |
dc.description.references | Imai, A. (2006). The dwarf phenotype of the Arabidopsis acl5 mutant is suppressed by a mutation in an upstream ORF of a bHLH gene. Development, 133(18), 3575-3585. doi:10.1242/dev.02535 | es_ES |
dc.description.references | Imai, A., Matsuyama, T., Hanzawa, Y., Akiyama, T., Tamaoki, M., Saji, H., … Takahashi, T. (2004). Spermidine Synthase Genes Are Essential for Survival of Arabidopsis. Plant Physiology, 135(3), 1565-1573. doi:10.1104/pp.104.041699 | es_ES |
dc.description.references | Kakehi, J. -i., Kuwashiro, Y., Niitsu, M., & Takahashi, T. (2008). Thermospermine is Required for Stem Elongation in Arabidopsis thaliana. Plant and Cell Physiology, 49(9), 1342-1349. doi:10.1093/pcp/pcn109 | es_ES |
dc.description.references | Katayama, H., Iwamoto, K., Kariya, Y., Asakawa, T., Kan, T., Fukuda, H., & Ohashi-Ito, K. (2015). A Negative Feedback Loop Controlling bHLH Complexes Is Involved in Vascular Cell Division and Differentiation in the Root Apical Meristem. Current Biology, 25(23), 3144-3150. doi:10.1016/j.cub.2015.10.051 | es_ES |
dc.description.references | Knott, J. M., Römer, P., & Sumper, M. (2007). Putative spermine synthases fromThalassiosira pseudonanaandArabidopsis thalianasynthesize thermospermine rather than spermine. FEBS Letters, 581(16), 3081-3086. doi:10.1016/j.febslet.2007.05.074 | es_ES |
dc.description.references | Marina, M., Sirera, F. V., Rambla, J. L., Gonzalez, M. E., Blázquez, M. A., Carbonell, J., … Ruiz, O. A. (2013). Thermospermine catabolism increases Arabidopsis thaliana resistance to Pseudomonas viridiflava. Journal of Experimental Botany, 64(5), 1393-1402. doi:10.1093/jxb/ert012 | es_ES |
dc.description.references | Michael, A. J. (2016). Polyamines in Eukaryotes, Bacteria, and Archaea. Journal of Biological Chemistry, 291(29), 14896-14903. doi:10.1074/jbc.r116.734780 | es_ES |
dc.description.references | Milhinhos, A., Prestele, J., Bollhöner, B., Matos, A., Vera-Sirera, F., Rambla, J. L., … Miguel, C. M. (2013). Thermospermine levels are controlled by an auxin-dependent feedback loop mechanism inPopulusxylem. The Plant Journal, 75(4), 685-698. doi:10.1111/tpj.12231 | es_ES |
dc.description.references | Minguet, E. G., Vera-Sirera, F., Marina, A., Carbonell, J., & Blazquez, M. A. (2008). Evolutionary Diversification in Polyamine Biosynthesis. Molecular Biology and Evolution, 25(10), 2119-2128. doi:10.1093/molbev/msn161 | es_ES |
dc.description.references | Muniz, L., Minguet, E. G., Singh, S. K., Pesquet, E., Vera-Sirera, F., Moreau-Courtois, C. L., … Tuominen, H. (2008). ACAULIS5 controls Arabidopsis xylem specification through the prevention of premature cell death. Development, 135(15), 2573-2582. doi:10.1242/dev.019349 | es_ES |
dc.description.references | Naka, Y., Watanabe, K., Sagor, G. H. M., Niitsu, M., Pillai, M. A., Kusano, T., & Takahashi, Y. (2010). Quantitative analysis of plant polyamines including thermospermine during growth and salinity stress. Plant Physiology and Biochemistry, 48(7), 527-533. doi:10.1016/j.plaphy.2010.01.013 | es_ES |
dc.description.references | Panicot, M., Minguet, E. G., Ferrando, A., Alcázar, R., Blázquez, M. A., Carbonell, J., … Tiburcio, A. F. (2002). A Polyamine Metabolon Involving Aminopropyl Transferase Complexes in Arabidopsis. The Plant Cell, 14(10), 2539-2551. doi:10.1105/tpc.004077 | es_ES |
dc.description.references | Pegg, A. E., & Michael, A. J. (2009). Spermine synthase. Cellular and Molecular Life Sciences, 67(1), 113-121. doi:10.1007/s00018-009-0165-5 | es_ES |
dc.description.references | Rambla, J. L., Vera-Sirera, F., Blázquez, M. A., Carbonell, J., & Granell, A. (2010). Quantitation of biogenic tetraamines in Arabidopsis thaliana. Analytical Biochemistry, 397(2), 208-211. doi:10.1016/j.ab.2009.10.013 | es_ES |
dc.description.references | Sagor, G. H. M., Berberich, T., Takahashi, Y., Niitsu, M., & Kusano, T. (2012). The polyamine spermine protects Arabidopsis from heat stress-induced damage by increasing expression of heat shock-related genes. Transgenic Research, 22(3), 595-605. doi:10.1007/s11248-012-9666-3 | es_ES |
dc.description.references | Sarrion-Perdigones, A., Falconi, E. E., Zandalinas, S. I., Juárez, P., Fernández-del-Carmen, A., Granell, A., & Orzaez, D. (2011). GoldenBraid: An Iterative Cloning System for Standardized Assembly of Reusable Genetic Modules. PLoS ONE, 6(7), e21622. doi:10.1371/journal.pone.0021622 | es_ES |
dc.description.references | Sekula, B., & Dauter, Z. (2018). Crystal structure of thermospermine synthase from Medicago truncatula and substrate discriminatory features of plant aminopropyltransferases. Biochemical Journal, 475(4), 787-802. doi:10.1042/bcj20170900 | es_ES |
dc.description.references | Siebers, T., Catarino, B., & Agusti, J. (2016). Identification and expression analyses of new potential regulators of xylem development and cambium activity in cassava (Manihot esculenta). Planta, 245(3), 539-548. doi:10.1007/s00425-016-2623-2 | es_ES |
dc.description.references | Tabor, C. W., & Tabor, H. (1984). Polyamines. Annual Review of Biochemistry, 53(1), 749-790. doi:10.1146/annurev.bi.53.070184.003533 | es_ES |
dc.description.references | Takahashi, T., & Kakehi, J.-I. (2009). Polyamines: ubiquitous polycations with unique roles in growth and stress responses. Annals of Botany, 105(1), 1-6. doi:10.1093/aob/mcp259 | es_ES |
dc.description.references | Takano, A., Kakehi, J.-I., & Takahashi, T. (2012). Thermospermine is Not a Minor Polyamine in the Plant Kingdom. Plant and Cell Physiology, 53(4), 606-616. doi:10.1093/pcp/pcs019 | es_ES |
dc.description.references | Teuber, M., Azemi, M. E., Namjoyan, F., Meier, A.-C., Wodak, A., Brandt, W., & Dräger, B. (2007). Putrescine N-methyltransferases—a structure–function analysis. Plant Molecular Biology, 63(6), 787-801. doi:10.1007/s11103-006-9126-7 | es_ES |
dc.description.references | Vera-Sirera, F., De Rybel, B., Úrbez, C., Kouklas, E., Pesquera, M., Álvarez-Mahecha, J. C., … Blázquez, M. A. (2015). A bHLH-Based Feedback Loop Restricts Vascular Cell Proliferation in Plants. Developmental Cell, 35(4), 432-443. doi:10.1016/j.devcel.2015.10.022 | es_ES |
dc.description.references | Vera-Sirera, F., Minguet, E. G., Singh, S. K., Ljung, K., Tuominen, H., Blázquez, M. A., & Carbonell, J. (2010). Role of polyamines in plant vascular development. Plant Physiology and Biochemistry, 48(7), 534-539. doi:10.1016/j.plaphy.2010.01.011 | es_ES |
dc.description.references | Vuosku, J., Karppinen, K., Muilu-Mäkelä, R., Kusano, T., Sagor, G. H. M., Avia, K., … Sarjala, T. (2018). Scots pine aminopropyltransferases shed new light on evolution of the polyamine biosynthesis pathway in seed plants. Annals of Botany, 121(6), 1243-1256. doi:10.1093/aob/mcy012 | es_ES |
dc.description.references | Wu, H., Min, J., Ikeguchi, Y., Zeng, H., Dong, A., Loppnau, P., … Plotnikov, A. N. (2007). Structure and Mechanism of Spermidine Synthases†. Biochemistry, 46(28), 8331-8339. doi:10.1021/bi602498k | es_ES |
dc.description.references | Yamaguchi, K., Takahashi, Y., Berberich, T., Imai, A., Miyazaki, A., Takahashi, T., … Kusano, T. (2006). The polyamine spermine protects against high salt stress inArabidopsis thaliana. FEBS Letters, 580(30), 6783-6788. doi:10.1016/j.febslet.2006.10.078 | es_ES |
dc.description.references | Yamaguchi, K., Takahashi, Y., Berberich, T., Imai, A., Takahashi, T., Michael, A. J., & Kusano, T. (2007). A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochemical and Biophysical Research Communications, 352(2), 486-490. doi:10.1016/j.bbrc.2006.11.041 | es_ES |
dc.description.references | Yoshimoto, K., Takamura, H., Kadota, I., Motose, H., & Takahashi, T. (2016). Chemical control of xylem differentiation by thermospermine, xylemin and auxin. Scientific Reports, 6(1). doi:10.1038/srep21487 | es_ES |