Mostrar el registro sencillo del ítem
dc.contributor.author | Bahaji, Abdellatif | es_ES |
dc.contributor.author | Muñoz, Francisco José | es_ES |
dc.contributor.author | Seguí-Simarro, Jose M. | es_ES |
dc.contributor.author | Camacho-Fernández, Carolina | es_ES |
dc.contributor.author | Rivas-Sendra, Alba | es_ES |
dc.contributor.author | Parra Vega, Verónica | es_ES |
dc.contributor.author | Ovecka, Miroslav | es_ES |
dc.contributor.author | Li, Jun | es_ES |
dc.contributor.author | Sánchez-López, Ángela María | es_ES |
dc.contributor.author | Almagro, Goizeder | es_ES |
dc.contributor.author | Baroja-Fernández, Edurne | es_ES |
dc.contributor.author | POZUETA-ROMERO, JAVIER | es_ES |
dc.date.accessioned | 2020-05-20T03:01:40Z | |
dc.date.available | 2020-05-20T03:01:40Z | |
dc.date.issued | 2019-03-12 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/143785 | |
dc.description.abstract | [EN] Zea mays Brittle1-1 (ZmBT1-1) is an essential component of the starch biosynthetic machinery in maize endosperms, enabling ADPglucose transport from cytosol to amyloplast in exchange for AMP or ADP. Although ZmBT1-1 has been long considered to be an amyloplast-specific marker, evidence has been provided that ZmBT1-1 is dually localized to plastids and mitochondria (Bahaji et al., 2011b). The mitochondrial localization of ZmBT1-1 suggested that this protein may have as-yet unidentified function(s). To understand the mitochondrial ZmBT1-1 function(s), we produced and characterized transgenic Zmbt1-1 plants expressing ZmBT1-1 delivered specifically to mitochondria. Metabolic and differential proteomic analyses showed down-regulation of sucrose synthase (SuSy)-mediated channeling of sucrose into starch metabolism, and up-regulation of the conversion of sucrose breakdown products generated by cell wall invertase (CWI) into ethanol and alanine, in Zmbt1-1 endosperms compared to wild-type. Electron microscopic analyses of Zmbt1-1 endosperm cells showed gross alterations in the mitochondrial ultrastructure. Notably, the protein expression pattern, metabolic profile, and aberrant mitochondrial ultrastructure of Zmbt1-1 endosperms were rescued by delivering ZmBT1-1 specifically to mitochondria. Results presented here provide evidence that the reduced starch content in Zmbt1-1 endosperms is at least partly due to (i) mitochondrial dysfunction, (ii) enhanced CWI-mediated channeling of sucrose into ethanol and alanine metabolism, and (iii) reduced SuSy-mediated channeling of sucrose into starch metabolism due to the lack of mitochondrial ZmBT1-1. Our results also strongly indicate that (a) mitochondrial ZmBT1-1 is an important determinant of the metabolic fate of sucrose entering the endosperm cells, and (b) plastidic ZmBT1-1 is not the sole ADPglucose transporter in maize endosperm amyloplasts. The possible involvement of mitochondrial ZmBT1-1 in exchange between intramitochondrial AMP and cytosolic ADP is discussed. | es_ES |
dc.description.sponsorship | This research was partially supported by the grants BIO2010-18239, BI2013-49125-C2-2-P and BIO2016-78747-P from the Comisión Interministerial de Ciencia y Tecnología and Fondo Europeo de Desarrollo Regional (Spain) and by the ERDF project Plants as a tool for sustainable global development (No. CZ.02.1.01/0.0/0.0/16_019/0000827). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Frontiers Media SA | es_ES |
dc.relation.ispartof | Frontiers in Plant Science | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | ADP glucose | es_ES |
dc.subject | Dual targeting | es_ES |
dc.subject | Mitochondrial carrier family | es_ES |
dc.subject | Mitochondrial retrograde signaling | es_ES |
dc.subject | Starch | es_ES |
dc.subject | Sucrose synthase | es_ES |
dc.subject | Zea mays | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.title | Mitochondrial Zea mays Brittle1-1 Is a Major Determinant of the Metabolic Fate of Incoming Sucrose and Mitochondrial Function in Developing Maize Endosperms | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3389/fpls.2019.00242 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//BIO2010-18239/ES/ASPECTOS FUNDAMENTALES DE MIVOISAP (MICROBIAL VOLATILES INDUCED STARCH ACCUMULATION PROCESS)/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MSMT//CZ.02.1.01%2F0.0%2F0.0%2F16_019%2F0000827/CZ/Plants as a tool for sustainable global development/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIO2013-49125-C2-2-P/ES/ASPECTOS BASICOS DEL METABOLISMO DEL ALMIDON Y APLICACIONES BIOTECNOLOGICAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIO2016-78747-P/ES/MECANISMOS DE REGULACION DEL CRECIMIENTO Y METABOLISMO EN PLANTAS EXPUESTAS A SUSTANCIAS BIOESTIMULANTES EMITIDAS POR MICROORGANISMOS Y APLICACIONES BIOTECNOLOGICAS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.description.bibliographicCitation | Bahaji, A.; Muñoz, FJ.; Seguí-Simarro, JM.; Camacho-Fernández, C.; Rivas-Sendra, A.; Parra Vega, V.; Ovecka, M.... (2019). Mitochondrial Zea mays Brittle1-1 Is a Major Determinant of the Metabolic Fate of Incoming Sucrose and Mitochondrial Function in Developing Maize Endosperms. Frontiers in Plant Science. 10:1-16. https://doi.org/10.3389/fpls.2019.00242 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3389/fpls.2019.00242 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 16 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.identifier.eissn | 1664-462X | es_ES |
dc.identifier.pmid | 30915089 | es_ES |
dc.identifier.pmcid | PMC6423154 | es_ES |
dc.relation.pasarela | S\384606 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministry of Education, Youth and Sports, República Checa | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Almagro, G., Viale, A. M., Montero, M., Muñoz, F. J., Baroja-Fernández, E., Mori, H., & Pozueta-Romero, J. (2018). A cAMP/CRP-controlled mechanism for the incorporation of extracellular ADP-glucose in Escherichia coli involving NupC and NupG nucleoside transporters. Scientific Reports, 8(1). doi:10.1038/s41598-018-33647-w | es_ES |
dc.description.references | Atkins, C. A., Smith, P., & Storer, P. J. (1997). Reexamination of the Intracellular Localization of de Novo Purine Synthesis in Cowpea Nodules. Plant Physiology, 113(1), 127-135. doi:10.1104/pp.113.1.127 | es_ES |
dc.description.references | Bahaji, A., Li, J., Sánchez-López, Á. M., Baroja-Fernández, E., Muñoz, F. J., Ovecka, M., … Pozueta-Romero, J. (2014). Starch biosynthesis, its regulation and biotechnological approaches to improve crop yields. Biotechnology Advances, 32(1), 87-106. doi:10.1016/j.biotechadv.2013.06.006 | es_ES |
dc.description.references | Bahaji, A., Muñoz, F. J., Ovecka, M., Baroja-Fernández, E., Montero, M., Li, J., … Pozueta-Romero, J. (2011). Specific delivery of AtBT1 to mitochondria complements the aberrant growth and sterility phenotype of homozygous Atbt1 Arabidopsis mutants. The Plant Journal, 68(6), 1115-1121. doi:10.1111/j.1365-313x.2011.04767.x | es_ES |
dc.description.references | Bahaji, A., Ovecka, M., Bárány, I., Risueño, M. C., Muñoz, F. J., Baroja-Fernández, E., … Pozueta-Romero, J. (2011). Dual Targeting to Mitochondria and Plastids of AtBT1 and ZmBT1, Two Members of the Mitochondrial Carrier Family. Plant and Cell Physiology, 52(4), 597-609. doi:10.1093/pcp/pcr019 | es_ES |
dc.description.references | Baroja-Fernández, E., Muñoz, F. J., Montero, M., Etxeberria, E., Sesma, M. T., Ovecka, M., … Pozueta-Romero, J. (2009). Enhancing Sucrose Synthase Activity in Transgenic Potato (Solanum tuberosum L.) Tubers Results in Increased Levels of Starch, ADPglucose and UDPglucose and Total Yield. Plant and Cell Physiology, 50(9), 1651-1662. doi:10.1093/pcp/pcp108 | es_ES |
dc.description.references | Bedhomme, M., Hoffmann, M., McCarthy, E. A., Gambonnet, B., Moran, R. G., Rébeillé, F., & Ravanel, S. (2005). Folate Metabolism in Plants. Journal of Biological Chemistry, 280(41), 34823-34831. doi:10.1074/jbc.m506045200 | es_ES |
dc.description.references | Bhave, M. R., Lawrence, S., Barton, C., & Hannah, L. C. (1990). Identification and molecular characterization of shrunken-2 cDNA clones of maize. The Plant Cell, 2(6), 581-588. doi:10.1105/tpc.2.6.581 | es_ES |
dc.description.references | Boehlein, S. K., Shaw, J. R., Boehlein, T. J., Boehlein, E. C., & Hannah, L. C. (2018). Fundamental differences in starch synthesis in the maize leaf, embryo, ovary and endosperm. The Plant Journal, 96(3), 595-606. doi:10.1111/tpj.14053 | es_ES |
dc.description.references | Bowsher, C. G., Scrase-Field, E. F. A. L., Esposito, S., Emes, M. J., & Tetlow, I. J. (2007). Characterization of ADP-glucose transport across the cereal endosperm amyloplast envelope. Journal of Experimental Botany, 58(6), 1321-1332. doi:10.1093/jxb/erl297 | es_ES |
dc.description.references | Busi, M. V., Gomez-Lobato, M. E., Rius, S. P., Turowski, V. R., Casati, P., Zabaleta, E. J., … Araya, A. (2011). Effect of Mitochondrial Dysfunction on Carbon Metabolism and Gene Expression in Flower Tissues of Arabidopsis thaliana. Molecular Plant, 4(1), 127-143. doi:10.1093/mp/ssq065 | es_ES |
dc.description.references | Cakir, B., Shiraishi, S., Tuncel, A., Matsusaka, H., Satoh, R., Singh, S., … Okita, T. W. (2016). Analysis of the rice ADPglucose transporter (OsBT1) indicates the presence of regulatory processes in the amyloplast stroma that control ADPglucose flux into starch. Plant Physiology, pp.01911.2015. doi:10.1104/pp.15.01911 | es_ES |
dc.description.references | Cao, H., & Shannon, J. C. (1996). BT1, a protein critical for in vivo starch accumulation in maize endosperm, is not detected in maize endosperm suspension cultures. Physiologia Plantarum, 97(4), 665-673. doi:10.1111/j.1399-3054.1996.tb00530.x | es_ES |
dc.description.references | Cao, H., Sullivan, T. D., Boyer, C. D., & Shannon, J. C. (1995). Btl, a structural gene for the major 39-44 kDa amyloplast membrane polypeptides. Physiologia Plantarum, 95(2), 176-186. doi:10.1111/j.1399-3054.1995.tb00825.x | es_ES |
dc.description.references | Chandel, N. S. (2014). Mitochondria as signaling organelles. BMC Biology, 12(1). doi:10.1186/1741-7007-12-34 | es_ES |
dc.description.references | Cheng, W. H., Taliercio, E. W., & Chourey, P. S. (1996). The Miniature1 Seed Locus of Maize Encodes a Cell Wall Invertase Required for Normal Development of Endosperm and Maternal Cells in the Pedicel. The Plant Cell, 971-983. doi:10.1105/tpc.8.6.971 | es_ES |
dc.description.references | Chourey, P. S., Taliercio, E. W., Carlson, S. J., & Ruan, Y.-L. (1998). Genetic evidence that the two isozymes of sucrose synthase present in developing maize endosperm are critical, one for cell wall integrity and the other for starch biosynthesis. Molecular and General Genetics MGG, 259(1), 88-96. doi:10.1007/s004380050792 | es_ES |
dc.description.references | Christensen, A. C., Lyznik, A., Mohammed, S., Elowsky, C. G., Elo, A., Yule, R., & Mackenzie, S. A. (2005). Dual-Domain, Dual-Targeting Organellar Protein Presequences in Arabidopsis Can Use Non-AUG Start Codons. The Plant Cell, 17(10), 2805-2816. doi:10.1105/tpc.105.035287 | es_ES |
dc.description.references | Christensen, A. H., & Quail, P. H. (1996). Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Research, 5(3), 213-218. doi:10.1007/bf01969712 | es_ES |
dc.description.references | Doehlert, D. C., Kuo, T. M., & Felker, F. C. (1988). Enzymes of Sucrose and Hexose Metabolism in Developing Kernels of Two Inbreds of Maize. Plant Physiology, 86(4), 1013-1019. doi:10.1104/pp.86.4.1013 | es_ES |
dc.description.references | Duchene, A.-M., Giritch, A., Hoffmann, B., Cognat, V., Lancelin, D., Peeters, N. M., … Small, I. D. (2005). Dual targeting is the rule for organellar aminoacyl-tRNA synthetases in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 102(45), 16484-16489. doi:10.1073/pnas.0504682102 | es_ES |
dc.description.references | Emanuelsson, O., Nielsen, H., Brunak, S., & von Heijne, G. (2000). Predicting Subcellular Localization of Proteins Based on their N-terminal Amino Acid Sequence. Journal of Molecular Biology, 300(4), 1005-1016. doi:10.1006/jmbi.2000.3903 | es_ES |
dc.description.references | Fiermonte, G., De Leonardis, F., Todisco, S., Palmieri, L., Lasorsa, F. M., & Palmieri, F. (2004). Identification of the Mitochondrial ATP-Mg/PiTransporter. Journal of Biological Chemistry, 279(29), 30722-30730. doi:10.1074/jbc.m400445200 | es_ES |
dc.description.references | Fukao, Y., Hayashi, Y., Mano, S., Hayashi, M., & Nishimura, M. (2001). Developmental Analysis of a Putative ATP/ADP Carrier Protein Localized on Glyoxysomal Membranes During the Peroxisome Transition in Pumpkin Cotyledons. Plant and Cell Physiology, 42(8), 835-841. doi:10.1093/pcp/pce108 | es_ES |
dc.description.references | Goggin, D. E., Lipscombe, R., Fedorova, E., Millar, A. H., Mann, A., Atkins, C. A., & Smith, P. M. C. (2003). Dual Intracellular Localization and Targeting of Aminoimidazole Ribonucleotide Synthetase in Cowpea. Plant Physiology, 131(3), 1033-1041. doi:10.1104/pp.102.015081 | es_ES |
dc.description.references | Haferkamp, I., & Schmitz-Esser, S. (2012). The Plant Mitochondrial Carrier Family: Functional and Evolutionary Aspects. Frontiers in Plant Science, 3. doi:10.3389/fpls.2012.00002 | es_ES |
dc.description.references | Huang, S., Taylor, N. L., Narsai, R., Eubel, H., Whelan, J., & Millar, A. H. (2008). Experimental Analysis of the Rice Mitochondrial Proteome, Its Biogenesis, and Heterogeneity. Plant Physiology, 149(2), 719-734. doi:10.1104/pp.108.131300 | es_ES |
dc.description.references | Igamberdiev, A. U. (2006). Equilibration of adenylates in the mitochondrial intermembrane space maintains respiration and regulates cytosolic metabolism. Journal of Experimental Botany, 57(10), 2133-2141. doi:10.1093/jxb/erl006 | es_ES |
dc.description.references | Kirchberger, S., Leroch, M., Huynen, M. A., Wahl, M., Neuhaus, H. E., & Tjaden, J. (2007). Molecular and Biochemical Analysis of the Plastidic ADP-glucose Transporter (ZmBT1) fromZea mays. Journal of Biological Chemistry, 282(31), 22481-22491. doi:10.1074/jbc.m702484200 | es_ES |
dc.description.references | Kleczkowski, L. (1996). Back to the drawing board: redefining starch synthesis in cereals. Trends in Plant Science, 1(11), 363-364. doi:10.1016/1360-1385(96)83884-2 | es_ES |
dc.description.references | Kmiec, B., Teixeira, P. F., & Glaser, E. (2014). Shredding the signal: targeting peptide degradation in mitochondria and chloroplasts. Trends in Plant Science, 19(12), 771-778. doi:10.1016/j.tplants.2014.09.004 | es_ES |
dc.description.references | Krath, B. N., & Hove-Jensen, B. (1999). Organellar and Cytosolic Localization of Four Phosphoribosyl Diphosphate Synthase Isozymes in Spinach. Plant Physiology, 119(2), 497-506. doi:10.1104/pp.119.2.497 | es_ES |
dc.description.references | Lee, C. P., Taylor, N. L., & Millar, A. H. (2013). Recent Advances in the Composition and Heterogeneity of the Arabidopsis Mitochondrial Proteome. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00004 | es_ES |
dc.description.references | Li, J., Baroja-Fernández, E., Bahaji, A., Muñoz, F. J., Ovecka, M., Montero, M., … Pozueta-Romero, J. (2013). Enhancing Sucrose Synthase Activity Results in Increased Levels of Starch and ADP-Glucose in Maize (Zea mays L.) Seed Endosperms. Plant and Cell Physiology, 54(2), 282-294. doi:10.1093/pcp/pcs180 | es_ES |
dc.description.references | Licausi, F., Van Dongen, J. T., Giuntoli, B., Novi, G., Santaniello, A., Geigenberger, P., & Perata, P. (2010). HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. The Plant Journal, 62(2), 302-315. doi:10.1111/j.1365-313x.2010.04149.x | es_ES |
dc.description.references | Loiret, F. G., Grimm, B., Hajirezaei, M. R., Kleiner, D., & Ortega, E. (2009). Inoculation of sugarcane with Pantoea sp. increases amino acid contents in shoot tissues; serine, alanine, glutamine and asparagine permit concomitantly ammonium excretion and nitrogenase activity of the bacterium. Journal of Plant Physiology, 166(11), 1152-1161. doi:10.1016/j.jplph.2009.01.002 | es_ES |
dc.description.references | Méchin, V., Thévenot, C., Le Guilloux, M., Prioul, J.-L., & Damerval, C. (2007). Developmental Analysis of Maize Endosperm Proteome Suggests a Pivotal Role for Pyruvate Orthophosphate Dikinase. Plant Physiology, 143(3), 1203-1219. doi:10.1104/pp.106.092148 | es_ES |
dc.description.references | Miyashita, Y., & Good, A. G. (2008). Contribution of the GABA shunt to hypoxia-induced alanine accumulation in roots of Arabidopsis thaliana. Plant and Cell Physiology, 49(1), 92-102. doi:10.1093/pcp/pcm171 | es_ES |
dc.description.references | Naeem, M., Tetlow, I. J., & Emes, M. J. (1997). Starch synthesis in amyloplasts purified from developing potato tubers. The Plant Journal, 11(5), 1095-1103. doi:10.1046/j.1365-313x.1997.11051095.x | es_ES |
dc.description.references | Niwa, Y., Hirano, T., Yoshimoto, K., Shimizu, M., & Kobayashi, H. (1999). Non-invasive quantitative detection and applications of non-toxic, S65T-type green fluorescent protein in living plants. The Plant Journal, 18(4), 455-463. doi:10.1046/j.1365-313x.1999.00464.x | es_ES |
dc.description.references | Palmieri, L., Arrigoni, R., Blanco, E., Carrari, F., Zanor, M. I., Studart-Guimaraes, C., … Palmieri, F. (2006). Molecular Identification of an Arabidopsis S-Adenosylmethionine Transporter. Analysis of Organ Distribution, Bacterial Expression, Reconstitution into Liposomes, and Functional Characterization. Plant Physiology, 142(3), 855-865. doi:10.1104/pp.106.086975 | es_ES |
dc.description.references | Paumard, P., Vaillier, J., Coulary, B., Schaeffer, J., Soubannier, V., Mueller, D. M., … Velours, J. (2002). The ATP synthase is involved in generating mitochondrial cristae morphology. The EMBO Journal, 21(3), 221-230. doi:10.1093/emboj/21.3.221 | es_ES |
dc.description.references | Peeters, N., & Small, I. (2001). Dual targeting to mitochondria and chloroplasts. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1541(1-2), 54-63. doi:10.1016/s0167-4889(01)00146-x | es_ES |
dc.description.references | Pozueta-Romero, J., Ardila, F., & Akazawa, T. (1991). ADP-Glucose Transport by the Chloroplast Adenylate Translocator Is Linked to Starch Biosynthesis. Plant Physiology, 97(4), 1565-1572. doi:10.1104/pp.97.4.1565 | es_ES |
dc.description.references | Prioul, J. L., Méchin, V., Lessard, P., Thévenot, C., Grimmer, M., Chateau-Joubert, S., … Edwards, K. J. (2008). A joint transcriptomic, proteomic and metabolic analysis of maize endosperm development and starch filling. Plant Biotechnology Journal, 6(9), 855-869. doi:10.1111/j.1467-7652.2008.00368.x | es_ES |
dc.description.references | Reynolds, E. S. (1963). THE USE OF LEAD CITRATE AT HIGH pH AS AN ELECTRON-OPAQUE STAIN IN ELECTRON MICROSCOPY. Journal of Cell Biology, 17(1), 208-212. doi:10.1083/jcb.17.1.208 | es_ES |
dc.description.references | Rhoads, D. M., & Subbaiah, C. C. (2007). Mitochondrial retrograde regulation in plants. Mitochondrion, 7(3), 177-194. doi:10.1016/j.mito.2007.01.002 | es_ES |
dc.description.references | Sánchez-López, Á. M., Bahaji, A., De Diego, N., Baslam, M., Li, J., Muñoz, F. J., … Pozueta-Romero, J. (2016). Arabidopsis Responds to Alternaria alternata Volatiles by Triggering Plastid Phosphoglucose Isomerase-Independent Mechanisms. Plant Physiology, 172(3), 1989-2001. doi:10.1104/pp.16.00945 | es_ES |
dc.description.references | Seguí-Simarro, J. M. (2015). High-Pressure Freezing and Freeze Substitution of In Vivo and In Vitro Cultured Plant Samples. Plant Microtechniques and Protocols, 117-134. doi:10.1007/978-3-319-19944-3_7 | es_ES |
dc.description.references | Shannon, J. C., Pien, F. M., & Liu, K. C. (1996). Nucleotides and Nucleotide Sugars in Developing Maize Endosperms (Synthesis of ADP-Glucose in brittle-1). Plant Physiology, 110(3), 835-843. doi:10.1104/pp.110.3.835 | es_ES |
dc.description.references | Shannon, J. C., Pien, F.-M., Cao, H., & Liu, K.-C. (1998). Brittle-1, an Adenylate Translocator, Facilitates Transfer of Extraplastidial Synthesized ADP-Glucose into Amyloplasts of Maize Endosperms. Plant Physiology, 117(4), 1235-1252. doi:10.1104/pp.117.4.1235 | es_ES |
dc.description.references | SHINGAKI-WELLS, R., MILLAR, A. H., WHELAN, J., & NARSAI, R. (2014). What happens to plant mitochondria under low oxygen? An omics review of the responses to low oxygen and reoxygenation. Plant, Cell & Environment, n/a-n/a. doi:10.1111/pce.12312 | es_ES |
dc.description.references | Shockey, J. M., Fulda, M. S., & Browse, J. (2003). Arabidopsis Contains a Large Superfamily of Acyl-Activating Enzymes. Phylogenetic and Biochemical Analysis Reveals a New Class of Acyl-Coenzyme A Synthetases. Plant Physiology, 132(2), 1065-1076. doi:10.1104/pp.103.020552 | es_ES |
dc.description.references | Smith, P. M. C., Mann, A. J., Goggin, D. E., & Atkins, C. A. (1998). Plant Molecular Biology, 36(6), 811-820. doi:10.1023/a:1005969830314 | es_ES |
dc.description.references | Sullivan, T., & Kaneko, Y. (1995). The maize brittle1 gene encodes amyloplast membrane polypeptides. Planta, 196(3). doi:10.1007/bf00203647 | es_ES |
dc.description.references | Sullivan, T. D., Strelow, L. I., Illingworth, C. A., Phillips, R. L., & Nelson, O. E. (1991). Analysis of maize brittle-1 alleles and a defective Suppressor-mutator-induced mutable allele. The Plant Cell, 3(12), 1337-1348. doi:10.1105/tpc.3.12.1337 | es_ES |
dc.description.references | Tarasenko, V. I., Katyshev, A. I., Yakovleva, T. V., Garnik, E. Y., Chernikova, V. V., Konstantinov, Y. M., & Koulintchenko, M. V. (2016). RPOTmp, an Arabidopsis RNA polymerase with dual targeting, plays an important role in mitochondria, but not in chloroplasts. Journal of Experimental Botany, 67(19), 5657-5669. doi:10.1093/jxb/erw327 | es_ES |
dc.description.references | Taylor, E. B. (2017). Functional Properties of the Mitochondrial Carrier System. Trends in Cell Biology, 27(9), 633-644. doi:10.1016/j.tcb.2017.04.004 | es_ES |
dc.description.references | Thevenot, C. (2005). QTLs for enzyme activities and soluble carbohydrates involved in starch accumulation during grain filling in maize. Journal of Experimental Botany, 56(413), 945-958. doi:10.1093/jxb/eri087 | es_ES |
dc.description.references | Thimm, O., Bläsing, O., Gibon, Y., Nagel, A., Meyer, S., Krüger, P., … Stitt, M. (2004). mapman: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. The Plant Journal, 37(6), 914-939. doi:10.1111/j.1365-313x.2004.02016.x | es_ES |
dc.description.references | Todisco, S., Agrimi, G., Castegna, A., & Palmieri, F. (2005). Identification of the Mitochondrial NAD+Transporter inSaccharomyces cerevisiae. Journal of Biological Chemistry, 281(3), 1524-1531. doi:10.1074/jbc.m510425200 | es_ES |
dc.description.references | Wang, K., & Frame, B. (2009). Biolistic Gun-Mediated Maize Genetic Transformation. Transgenic Maize, 29-45. doi:10.1007/978-1-59745-494-0_3 | es_ES |
dc.description.references | Wiseman, A., Gillham, N. W., & Boynton, J. E. (1977). Nuclear mutations affecting mitochondrial structure and function in Chlamydomonas. Journal of Cell Biology, 73(1), 56-77. doi:10.1083/jcb.73.1.56 | es_ES |
dc.description.references | Zrenner, R., Stitt, M., Sonnewald, U., & Boldt, R. (2006). PYRIMIDINE AND PURINE BIOSYNTHESIS AND DEGRADATION IN PLANTS. Annual Review of Plant Biology, 57(1), 805-836. doi:10.1146/annurev.arplant.57.032905.105421 | es_ES |