- -

Mitochondrial Zea mays Brittle1-1 Is a Major Determinant of the Metabolic Fate of Incoming Sucrose and Mitochondrial Function in Developing Maize Endosperms

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Mitochondrial Zea mays Brittle1-1 Is a Major Determinant of the Metabolic Fate of Incoming Sucrose and Mitochondrial Function in Developing Maize Endosperms

Mostrar el registro completo del ítem

Bahaji, A.; Muñoz, FJ.; Seguí-Simarro, JM.; Camacho-Fernández, C.; Rivas-Sendra, A.; Parra Vega, V.; Ovecka, M.... (2019). Mitochondrial Zea mays Brittle1-1 Is a Major Determinant of the Metabolic Fate of Incoming Sucrose and Mitochondrial Function in Developing Maize Endosperms. Frontiers in Plant Science. 10:1-16. https://doi.org/10.3389/fpls.2019.00242

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143785

Ficheros en el ítem

Metadatos del ítem

Título: Mitochondrial Zea mays Brittle1-1 Is a Major Determinant of the Metabolic Fate of Incoming Sucrose and Mitochondrial Function in Developing Maize Endosperms
Autor: Bahaji, Abdellatif Muñoz, Francisco José Seguí-Simarro, Jose M. Camacho-Fernández, Carolina Rivas-Sendra, Alba Parra Vega, Verónica Ovecka, Miroslav Li, Jun Sánchez-López, Ángela María Almagro, Goizeder Baroja-Fernández, Edurne POZUETA-ROMERO, JAVIER
Entidad UPV: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Fecha difusión:
Resumen:
[EN] Zea mays Brittle1-1 (ZmBT1-1) is an essential component of the starch biosynthetic machinery in maize endosperms, enabling ADPglucose transport from cytosol to amyloplast in exchange for AMP or ADP. Although ZmBT1-1 ...[+]
Palabras clave: ADP glucose , Dual targeting , Mitochondrial carrier family , Mitochondrial retrograde signaling , Starch , Sucrose synthase , Zea mays
Derechos de uso: Reconocimiento (by)
Fuente:
Frontiers in Plant Science. (eissn: 1664-462X )
DOI: 10.3389/fpls.2019.00242
Editorial:
Frontiers Media SA
Versión del editor: https://doi.org/10.3389/fpls.2019.00242
Código del Proyecto:
info:eu-repo/grantAgreement/MICINN//BIO2010-18239/ES/ASPECTOS FUNDAMENTALES DE MIVOISAP (MICROBIAL VOLATILES INDUCED STARCH ACCUMULATION PROCESS)/
info:eu-repo/grantAgreement/MSMT//CZ.02.1.01%2F0.0%2F0.0%2F16_019%2F0000827/CZ/Plants as a tool for sustainable global development/
info:eu-repo/grantAgreement/MINECO//BIO2013-49125-C2-2-P/ES/ASPECTOS BASICOS DEL METABOLISMO DEL ALMIDON Y APLICACIONES BIOTECNOLOGICAS/
info:eu-repo/grantAgreement/MINECO//BIO2016-78747-P/ES/MECANISMOS DE REGULACION DEL CRECIMIENTO Y METABOLISMO EN PLANTAS EXPUESTAS A SUSTANCIAS BIOESTIMULANTES EMITIDAS POR MICROORGANISMOS Y APLICACIONES BIOTECNOLOGICAS/
Agradecimientos:
This research was partially supported by the grants BIO2010-18239, BI2013-49125-C2-2-P and BIO2016-78747-P from the Comisión Interministerial de Ciencia y Tecnología and Fondo Europeo de Desarrollo Regional (Spain) and by ...[+]
Tipo: Artículo

References

Almagro, G., Viale, A. M., Montero, M., Muñoz, F. J., Baroja-Fernández, E., Mori, H., & Pozueta-Romero, J. (2018). A cAMP/CRP-controlled mechanism for the incorporation of extracellular ADP-glucose in Escherichia coli involving NupC and NupG nucleoside transporters. Scientific Reports, 8(1). doi:10.1038/s41598-018-33647-w

Atkins, C. A., Smith, P., & Storer, P. J. (1997). Reexamination of the Intracellular Localization of de Novo Purine Synthesis in Cowpea Nodules. Plant Physiology, 113(1), 127-135. doi:10.1104/pp.113.1.127

Bahaji, A., Li, J., Sánchez-López, Á. M., Baroja-Fernández, E., Muñoz, F. J., Ovecka, M., … Pozueta-Romero, J. (2014). Starch biosynthesis, its regulation and biotechnological approaches to improve crop yields. Biotechnology Advances, 32(1), 87-106. doi:10.1016/j.biotechadv.2013.06.006 [+]
Almagro, G., Viale, A. M., Montero, M., Muñoz, F. J., Baroja-Fernández, E., Mori, H., & Pozueta-Romero, J. (2018). A cAMP/CRP-controlled mechanism for the incorporation of extracellular ADP-glucose in Escherichia coli involving NupC and NupG nucleoside transporters. Scientific Reports, 8(1). doi:10.1038/s41598-018-33647-w

Atkins, C. A., Smith, P., & Storer, P. J. (1997). Reexamination of the Intracellular Localization of de Novo Purine Synthesis in Cowpea Nodules. Plant Physiology, 113(1), 127-135. doi:10.1104/pp.113.1.127

Bahaji, A., Li, J., Sánchez-López, Á. M., Baroja-Fernández, E., Muñoz, F. J., Ovecka, M., … Pozueta-Romero, J. (2014). Starch biosynthesis, its regulation and biotechnological approaches to improve crop yields. Biotechnology Advances, 32(1), 87-106. doi:10.1016/j.biotechadv.2013.06.006

Bahaji, A., Muñoz, F. J., Ovecka, M., Baroja-Fernández, E., Montero, M., Li, J., … Pozueta-Romero, J. (2011). Specific delivery of AtBT1 to mitochondria complements the aberrant growth and sterility phenotype of homozygous Atbt1 Arabidopsis mutants. The Plant Journal, 68(6), 1115-1121. doi:10.1111/j.1365-313x.2011.04767.x

Bahaji, A., Ovecka, M., Bárány, I., Risueño, M. C., Muñoz, F. J., Baroja-Fernández, E., … Pozueta-Romero, J. (2011). Dual Targeting to Mitochondria and Plastids of AtBT1 and ZmBT1, Two Members of the Mitochondrial Carrier Family. Plant and Cell Physiology, 52(4), 597-609. doi:10.1093/pcp/pcr019

Baroja-Fernández, E., Muñoz, F. J., Montero, M., Etxeberria, E., Sesma, M. T., Ovecka, M., … Pozueta-Romero, J. (2009). Enhancing Sucrose Synthase Activity in Transgenic Potato (Solanum tuberosum L.) Tubers Results in Increased Levels of Starch, ADPglucose and UDPglucose and Total Yield. Plant and Cell Physiology, 50(9), 1651-1662. doi:10.1093/pcp/pcp108

Bedhomme, M., Hoffmann, M., McCarthy, E. A., Gambonnet, B., Moran, R. G., Rébeillé, F., & Ravanel, S. (2005). Folate Metabolism in Plants. Journal of Biological Chemistry, 280(41), 34823-34831. doi:10.1074/jbc.m506045200

Bhave, M. R., Lawrence, S., Barton, C., & Hannah, L. C. (1990). Identification and molecular characterization of shrunken-2 cDNA clones of maize. The Plant Cell, 2(6), 581-588. doi:10.1105/tpc.2.6.581

Boehlein, S. K., Shaw, J. R., Boehlein, T. J., Boehlein, E. C., & Hannah, L. C. (2018). Fundamental differences in starch synthesis in the maize leaf, embryo, ovary and endosperm. The Plant Journal, 96(3), 595-606. doi:10.1111/tpj.14053

Bowsher, C. G., Scrase-Field, E. F. A. L., Esposito, S., Emes, M. J., & Tetlow, I. J. (2007). Characterization of ADP-glucose transport across the cereal endosperm amyloplast envelope. Journal of Experimental Botany, 58(6), 1321-1332. doi:10.1093/jxb/erl297

Busi, M. V., Gomez-Lobato, M. E., Rius, S. P., Turowski, V. R., Casati, P., Zabaleta, E. J., … Araya, A. (2011). Effect of Mitochondrial Dysfunction on Carbon Metabolism and Gene Expression in Flower Tissues of Arabidopsis thaliana. Molecular Plant, 4(1), 127-143. doi:10.1093/mp/ssq065

Cakir, B., Shiraishi, S., Tuncel, A., Matsusaka, H., Satoh, R., Singh, S., … Okita, T. W. (2016). Analysis of the rice ADPglucose transporter (OsBT1) indicates the presence of regulatory processes in the amyloplast stroma that control ADPglucose flux into starch. Plant Physiology, pp.01911.2015. doi:10.1104/pp.15.01911

Cao, H., & Shannon, J. C. (1996). BT1, a protein critical for in vivo starch accumulation in maize endosperm, is not detected in maize endosperm suspension cultures. Physiologia Plantarum, 97(4), 665-673. doi:10.1111/j.1399-3054.1996.tb00530.x

Cao, H., Sullivan, T. D., Boyer, C. D., & Shannon, J. C. (1995). Btl, a structural gene for the major 39-44 kDa amyloplast membrane polypeptides. Physiologia Plantarum, 95(2), 176-186. doi:10.1111/j.1399-3054.1995.tb00825.x

Chandel, N. S. (2014). Mitochondria as signaling organelles. BMC Biology, 12(1). doi:10.1186/1741-7007-12-34

Cheng, W. H., Taliercio, E. W., & Chourey, P. S. (1996). The Miniature1 Seed Locus of Maize Encodes a Cell Wall Invertase Required for Normal Development of Endosperm and Maternal Cells in the Pedicel. The Plant Cell, 971-983. doi:10.1105/tpc.8.6.971

Chourey, P. S., Taliercio, E. W., Carlson, S. J., & Ruan, Y.-L. (1998). Genetic evidence that the two isozymes of sucrose synthase present in developing maize endosperm are critical, one for cell wall integrity and the other for starch biosynthesis. Molecular and General Genetics MGG, 259(1), 88-96. doi:10.1007/s004380050792

Christensen, A. C., Lyznik, A., Mohammed, S., Elowsky, C. G., Elo, A., Yule, R., & Mackenzie, S. A. (2005). Dual-Domain, Dual-Targeting Organellar Protein Presequences in Arabidopsis Can Use Non-AUG Start Codons. The Plant Cell, 17(10), 2805-2816. doi:10.1105/tpc.105.035287

Christensen, A. H., & Quail, P. H. (1996). Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Research, 5(3), 213-218. doi:10.1007/bf01969712

Doehlert, D. C., Kuo, T. M., & Felker, F. C. (1988). Enzymes of Sucrose and Hexose Metabolism in Developing Kernels of Two Inbreds of Maize. Plant Physiology, 86(4), 1013-1019. doi:10.1104/pp.86.4.1013

Duchene, A.-M., Giritch, A., Hoffmann, B., Cognat, V., Lancelin, D., Peeters, N. M., … Small, I. D. (2005). Dual targeting is the rule for organellar aminoacyl-tRNA synthetases in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 102(45), 16484-16489. doi:10.1073/pnas.0504682102

Emanuelsson, O., Nielsen, H., Brunak, S., & von Heijne, G. (2000). Predicting Subcellular Localization of Proteins Based on their N-terminal Amino Acid Sequence. Journal of Molecular Biology, 300(4), 1005-1016. doi:10.1006/jmbi.2000.3903

Fiermonte, G., De Leonardis, F., Todisco, S., Palmieri, L., Lasorsa, F. M., & Palmieri, F. (2004). Identification of the Mitochondrial ATP-Mg/PiTransporter. Journal of Biological Chemistry, 279(29), 30722-30730. doi:10.1074/jbc.m400445200

Fukao, Y., Hayashi, Y., Mano, S., Hayashi, M., & Nishimura, M. (2001). Developmental Analysis of a Putative ATP/ADP Carrier Protein Localized on Glyoxysomal Membranes During the Peroxisome Transition in Pumpkin Cotyledons. Plant and Cell Physiology, 42(8), 835-841. doi:10.1093/pcp/pce108

Goggin, D. E., Lipscombe, R., Fedorova, E., Millar, A. H., Mann, A., Atkins, C. A., & Smith, P. M. C. (2003). Dual Intracellular Localization and Targeting of Aminoimidazole Ribonucleotide Synthetase in Cowpea. Plant Physiology, 131(3), 1033-1041. doi:10.1104/pp.102.015081

Haferkamp, I., & Schmitz-Esser, S. (2012). The Plant Mitochondrial Carrier Family: Functional and Evolutionary Aspects. Frontiers in Plant Science, 3. doi:10.3389/fpls.2012.00002

Huang, S., Taylor, N. L., Narsai, R., Eubel, H., Whelan, J., & Millar, A. H. (2008). Experimental Analysis of the Rice Mitochondrial Proteome, Its Biogenesis, and Heterogeneity. Plant Physiology, 149(2), 719-734. doi:10.1104/pp.108.131300

Igamberdiev, A. U. (2006). Equilibration of adenylates in the mitochondrial intermembrane space maintains respiration and regulates cytosolic metabolism. Journal of Experimental Botany, 57(10), 2133-2141. doi:10.1093/jxb/erl006

Kirchberger, S., Leroch, M., Huynen, M. A., Wahl, M., Neuhaus, H. E., & Tjaden, J. (2007). Molecular and Biochemical Analysis of the Plastidic ADP-glucose Transporter (ZmBT1) fromZea mays. Journal of Biological Chemistry, 282(31), 22481-22491. doi:10.1074/jbc.m702484200

Kleczkowski, L. (1996). Back to the drawing board: redefining starch synthesis in cereals. Trends in Plant Science, 1(11), 363-364. doi:10.1016/1360-1385(96)83884-2

Kmiec, B., Teixeira, P. F., & Glaser, E. (2014). Shredding the signal: targeting peptide degradation in mitochondria and chloroplasts. Trends in Plant Science, 19(12), 771-778. doi:10.1016/j.tplants.2014.09.004

Krath, B. N., & Hove-Jensen, B. (1999). Organellar and Cytosolic Localization of Four Phosphoribosyl Diphosphate Synthase Isozymes in Spinach. Plant Physiology, 119(2), 497-506. doi:10.1104/pp.119.2.497

Lee, C. P., Taylor, N. L., & Millar, A. H. (2013). Recent Advances in the Composition and Heterogeneity of the Arabidopsis Mitochondrial Proteome. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00004

Li, J., Baroja-Fernández, E., Bahaji, A., Muñoz, F. J., Ovecka, M., Montero, M., … Pozueta-Romero, J. (2013). Enhancing Sucrose Synthase Activity Results in Increased Levels of Starch and ADP-Glucose in Maize (Zea mays L.) Seed Endosperms. Plant and Cell Physiology, 54(2), 282-294. doi:10.1093/pcp/pcs180

Licausi, F., Van Dongen, J. T., Giuntoli, B., Novi, G., Santaniello, A., Geigenberger, P., & Perata, P. (2010). HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. The Plant Journal, 62(2), 302-315. doi:10.1111/j.1365-313x.2010.04149.x

Loiret, F. G., Grimm, B., Hajirezaei, M. R., Kleiner, D., & Ortega, E. (2009). Inoculation of sugarcane with Pantoea sp. increases amino acid contents in shoot tissues; serine, alanine, glutamine and asparagine permit concomitantly ammonium excretion and nitrogenase activity of the bacterium. Journal of Plant Physiology, 166(11), 1152-1161. doi:10.1016/j.jplph.2009.01.002

Méchin, V., Thévenot, C., Le Guilloux, M., Prioul, J.-L., & Damerval, C. (2007). Developmental Analysis of Maize Endosperm Proteome Suggests a Pivotal Role for Pyruvate Orthophosphate Dikinase. Plant Physiology, 143(3), 1203-1219. doi:10.1104/pp.106.092148

Miyashita, Y., & Good, A. G. (2008). Contribution of the GABA shunt to hypoxia-induced alanine accumulation in roots of Arabidopsis thaliana. Plant and Cell Physiology, 49(1), 92-102. doi:10.1093/pcp/pcm171

Naeem, M., Tetlow, I. J., & Emes, M. J. (1997). Starch synthesis in amyloplasts purified from developing potato tubers. The Plant Journal, 11(5), 1095-1103. doi:10.1046/j.1365-313x.1997.11051095.x

Niwa, Y., Hirano, T., Yoshimoto, K., Shimizu, M., & Kobayashi, H. (1999). Non-invasive quantitative detection and applications of non-toxic, S65T-type green fluorescent protein in living plants. The Plant Journal, 18(4), 455-463. doi:10.1046/j.1365-313x.1999.00464.x

Palmieri, L., Arrigoni, R., Blanco, E., Carrari, F., Zanor, M. I., Studart-Guimaraes, C., … Palmieri, F. (2006). Molecular Identification of an Arabidopsis S-Adenosylmethionine Transporter. Analysis of Organ Distribution, Bacterial Expression, Reconstitution into Liposomes, and Functional Characterization. Plant Physiology, 142(3), 855-865. doi:10.1104/pp.106.086975

Paumard, P., Vaillier, J., Coulary, B., Schaeffer, J., Soubannier, V., Mueller, D. M., … Velours, J. (2002). The ATP synthase is involved in generating mitochondrial cristae morphology. The EMBO Journal, 21(3), 221-230. doi:10.1093/emboj/21.3.221

Peeters, N., & Small, I. (2001). Dual targeting to mitochondria and chloroplasts. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1541(1-2), 54-63. doi:10.1016/s0167-4889(01)00146-x

Pozueta-Romero, J., Ardila, F., & Akazawa, T. (1991). ADP-Glucose Transport by the Chloroplast Adenylate Translocator Is Linked to Starch Biosynthesis. Plant Physiology, 97(4), 1565-1572. doi:10.1104/pp.97.4.1565

Prioul, J. L., Méchin, V., Lessard, P., Thévenot, C., Grimmer, M., Chateau-Joubert, S., … Edwards, K. J. (2008). A joint transcriptomic, proteomic and metabolic analysis of maize endosperm development and starch filling. Plant Biotechnology Journal, 6(9), 855-869. doi:10.1111/j.1467-7652.2008.00368.x

Reynolds, E. S. (1963). THE USE OF LEAD CITRATE AT HIGH pH AS AN ELECTRON-OPAQUE STAIN IN ELECTRON MICROSCOPY. Journal of Cell Biology, 17(1), 208-212. doi:10.1083/jcb.17.1.208

Rhoads, D. M., & Subbaiah, C. C. (2007). Mitochondrial retrograde regulation in plants. Mitochondrion, 7(3), 177-194. doi:10.1016/j.mito.2007.01.002

Sánchez-López, Á. M., Bahaji, A., De Diego, N., Baslam, M., Li, J., Muñoz, F. J., … Pozueta-Romero, J. (2016). Arabidopsis Responds to Alternaria alternata Volatiles by Triggering Plastid Phosphoglucose Isomerase-Independent Mechanisms. Plant Physiology, 172(3), 1989-2001. doi:10.1104/pp.16.00945

Seguí-Simarro, J. M. (2015). High-Pressure Freezing and Freeze Substitution of In Vivo and In Vitro Cultured Plant Samples. Plant Microtechniques and Protocols, 117-134. doi:10.1007/978-3-319-19944-3_7

Shannon, J. C., Pien, F. M., & Liu, K. C. (1996). Nucleotides and Nucleotide Sugars in Developing Maize Endosperms (Synthesis of ADP-Glucose in brittle-1). Plant Physiology, 110(3), 835-843. doi:10.1104/pp.110.3.835

Shannon, J. C., Pien, F.-M., Cao, H., & Liu, K.-C. (1998). Brittle-1, an Adenylate Translocator, Facilitates Transfer of Extraplastidial Synthesized ADP-Glucose into Amyloplasts of Maize Endosperms. Plant Physiology, 117(4), 1235-1252. doi:10.1104/pp.117.4.1235

SHINGAKI-WELLS, R., MILLAR, A. H., WHELAN, J., & NARSAI, R. (2014). What happens to plant mitochondria under low oxygen? An omics review of the responses to low oxygen and reoxygenation. Plant, Cell & Environment, n/a-n/a. doi:10.1111/pce.12312

Shockey, J. M., Fulda, M. S., & Browse, J. (2003). Arabidopsis Contains a Large Superfamily of Acyl-Activating Enzymes. Phylogenetic and Biochemical Analysis Reveals a New Class of Acyl-Coenzyme A Synthetases. Plant Physiology, 132(2), 1065-1076. doi:10.1104/pp.103.020552

Smith, P. M. C., Mann, A. J., Goggin, D. E., & Atkins, C. A. (1998). Plant Molecular Biology, 36(6), 811-820. doi:10.1023/a:1005969830314

Sullivan, T., & Kaneko, Y. (1995). The maize brittle1 gene encodes amyloplast membrane polypeptides. Planta, 196(3). doi:10.1007/bf00203647

Sullivan, T. D., Strelow, L. I., Illingworth, C. A., Phillips, R. L., & Nelson, O. E. (1991). Analysis of maize brittle-1 alleles and a defective Suppressor-mutator-induced mutable allele. The Plant Cell, 3(12), 1337-1348. doi:10.1105/tpc.3.12.1337

Tarasenko, V. I., Katyshev, A. I., Yakovleva, T. V., Garnik, E. Y., Chernikova, V. V., Konstantinov, Y. M., & Koulintchenko, M. V. (2016). RPOTmp, an Arabidopsis RNA polymerase with dual targeting, plays an important role in mitochondria, but not in chloroplasts. Journal of Experimental Botany, 67(19), 5657-5669. doi:10.1093/jxb/erw327

Taylor, E. B. (2017). Functional Properties of the Mitochondrial Carrier System. Trends in Cell Biology, 27(9), 633-644. doi:10.1016/j.tcb.2017.04.004

Thevenot, C. (2005). QTLs for enzyme activities and soluble carbohydrates involved in starch accumulation during grain filling in maize. Journal of Experimental Botany, 56(413), 945-958. doi:10.1093/jxb/eri087

Thimm, O., Bläsing, O., Gibon, Y., Nagel, A., Meyer, S., Krüger, P., … Stitt, M. (2004). mapman: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. The Plant Journal, 37(6), 914-939. doi:10.1111/j.1365-313x.2004.02016.x

Todisco, S., Agrimi, G., Castegna, A., & Palmieri, F. (2005). Identification of the Mitochondrial NAD+Transporter inSaccharomyces cerevisiae. Journal of Biological Chemistry, 281(3), 1524-1531. doi:10.1074/jbc.m510425200

Wang, K., & Frame, B. (2009). Biolistic Gun-Mediated Maize Genetic Transformation. Transgenic Maize, 29-45. doi:10.1007/978-1-59745-494-0_3

Wiseman, A., Gillham, N. W., & Boynton, J. E. (1977). Nuclear mutations affecting mitochondrial structure and function in Chlamydomonas. Journal of Cell Biology, 73(1), 56-77. doi:10.1083/jcb.73.1.56

Zrenner, R., Stitt, M., Sonnewald, U., & Boldt, R. (2006). PYRIMIDINE AND PURINE BIOSYNTHESIS AND DEGRADATION IN PLANTS. Annual Review of Plant Biology, 57(1), 805-836. doi:10.1146/annurev.arplant.57.032905.105421

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem