- -

Comparative Study of Coupling Techniques in Lamb Wave Testing of Metallic and Cementitious Plates

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Comparative Study of Coupling Techniques in Lamb Wave Testing of Metallic and Cementitious Plates

Show full item record

Vazquez-Martinez, S.; Gosálbez Castillo, J.; Bosch Roig, I.; Carrión García, A.; Gallardo-Llopis, C.; Paya Bernabeu, JJ. (2019). Comparative Study of Coupling Techniques in Lamb Wave Testing of Metallic and Cementitious Plates. Sensors. 19(19):1-30. https://doi.org/10.3390/s19194068

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143874

Files in this item

Item Metadata

Title: Comparative Study of Coupling Techniques in Lamb Wave Testing of Metallic and Cementitious Plates
Author: Vazquez-Martinez, Santiago Gosálbez Castillo, Jorge Bosch Roig, Ignacio CARRIÓN GARCÍA, ALICIA Gallardo-Llopis, Carles Paya Bernabeu, Jorge Juan
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil
Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia
Issued date:
Abstract:
[Otros] Lamb waves have emerged as a valuable tool to examine long plate-like structures in a faster way compared to conventional bulk wave techniques, which make them attractive in non-destructive testing. However, they ...[+]
Subjects: Non-destructive testing , Ultrasound , Signal processing , Lamb waves , Dispersion curves , Angle beam wedge transducers , Immersion technique , Air-coupled
Copyrigths: Reconocimiento (by)
Source:
Sensors. (eissn: 1424-8220 )
DOI: 10.3390/s19194068
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/s19194068
Project ID:
info:eu-repo/grantAgreement/MINECO//BES-2015-071958/ES/BES-2015-071958/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-87573-C2-1-P/ES/DESARROLLO Y APLICACION DE ENSAYOS NO DESTRUCTIVOS BASADOS EN ONDAS MECANICAS PARA LA EVALUACION Y MONITORIZACION DE REOLOGIA Y AUTOSANACION EN MATERIALES CEMENTANTES/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-87573-C2-2-P/ES/DESARROLLO Y APLICACION DE ENSAYOS NO DESTRUCTIVOS BASADOS EN ONDAS MECANICAS PARA LA EVALUACION Y MONITORIZACION DE REOLOGIA Y AUTOSANACION EN MATERIALES CEMENTANTES/
Thanks:
This research was funded by the Spanish Administration, grants number BES-2015-071958 and BIA2017-87573-C2.
Type: Artículo

References

Birgani, P. T., Tahan, K. N., Sodagar, S., & Shishesaz, M. (2015). Theoretical modeling of low-attenuation lamb wave modes generation in three-layer adhesive joints using angle beam transducer. Latin American Journal of Solids and Structures, 12(3), 461-476. doi:10.1590/1679-78251143

Seale, M. D., Smith, B. T., & Prosser, W. H. (1998). Lamb wave assessment of fatigue and thermal damage in composites. The Journal of the Acoustical Society of America, 103(5), 2416-2424. doi:10.1121/1.422761

Alleyne, D. N., & Cawley, P. (1992). Optimization of lamb wave inspection techniques. NDT & E International, 25(1), 11-22. doi:10.1016/0963-8695(92)90003-y [+]
Birgani, P. T., Tahan, K. N., Sodagar, S., & Shishesaz, M. (2015). Theoretical modeling of low-attenuation lamb wave modes generation in three-layer adhesive joints using angle beam transducer. Latin American Journal of Solids and Structures, 12(3), 461-476. doi:10.1590/1679-78251143

Seale, M. D., Smith, B. T., & Prosser, W. H. (1998). Lamb wave assessment of fatigue and thermal damage in composites. The Journal of the Acoustical Society of America, 103(5), 2416-2424. doi:10.1121/1.422761

Alleyne, D. N., & Cawley, P. (1992). Optimization of lamb wave inspection techniques. NDT & E International, 25(1), 11-22. doi:10.1016/0963-8695(92)90003-y

Cawley, P., & Alleyne, D. (1996). The use of Lamb waves for the long range inspection of large structures. Ultrasonics, 34(2-5), 287-290. doi:10.1016/0041-624x(96)00024-8

Sharma, S., & Mukherjee, A. (2014). A Non-Contact Technique for Damage Monitoring in Submerged Plates Using Guided Waves. Journal of Testing and Evaluation, 43(4), 20120357. doi:10.1520/jte20120357

Jia, X. (1997). Modal analysis of Lamb wave generation in elastic plates by liquid wedge transducers. The Journal of the Acoustical Society of America, 101(2), 834-842. doi:10.1121/1.418041

Shelke, A., Kundu, T., Amjad, U., Hahn, K., & Grill, W. (2011). Mode-selective excitation and detection of ultrasonic guided waves for delamination detection in laminated aluminum plates. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 58(3), 567-577. doi:10.1109/tuffc.2011.1839

Chen, J., Su, Z., & Cheng, L. (2009). Identification of corrosion damage in submerged structures using fundamental anti-symmetric Lamb waves. Smart Materials and Structures, 19(1), 015004. doi:10.1088/0964-1726/19/1/015004

Benz, R., Niethammer, M., Hurlebaus, S., & Jacobs, L. J. (2003). Localization of notches with Lamb waves. The Journal of the Acoustical Society of America, 114(2), 677-685. doi:10.1121/1.1593058

Guo, N., & Cawley, P. (1993). The interaction of Lamb waves with delaminations in composite laminates. The Journal of the Acoustical Society of America, 94(4), 2240-2246. doi:10.1121/1.407495

Xu, K., Ta, D., Moilanen, P., & Wang, W. (2012). Mode separation of Lamb waves based on dispersion compensation method. The Journal of the Acoustical Society of America, 131(4), 2714-2722. doi:10.1121/1.3685482

Guo, D., & Kundu, T. (2001). A new transducer holder mechanism for pipe inspection. The Journal of the Acoustical Society of America, 110(1), 303-309. doi:10.1121/1.1377289

Ghosh, T., Kundu, T., & Karpur, P. (1998). Efficient use of Lamb modes for detecting defects in large plates. Ultrasonics, 36(7), 791-801. doi:10.1016/s0041-624x(98)00012-2

Giurgiutiu, V. (2005). Tuned Lamb Wave Excitation and Detection with Piezoelectric Wafer Active Sensors for Structural Health Monitoring. Journal of Intelligent Material Systems and Structures, 16(4), 291-305. doi:10.1177/1045389x05050106

Rguiti, M., Grondel, S., El youbi, F., Courtois, C., Lippert, M., & Leriche, A. (2006). Optimized piezoelectric sensor for a specific application: Detection of Lamb waves. Sensors and Actuators A: Physical, 126(2), 362-368. doi:10.1016/j.sna.2005.10.015

Kessler, S. S., Spearing, S. M., & Soutis, C. (2002). Damage detection in composite materials using Lamb wave methods. Smart Materials and Structures, 11(2), 269-278. doi:10.1088/0964-1726/11/2/310

Mustapha, S., & Ye, L. (2015). Bonding Piezoelectric Wafers for Application in Structural Health Monitoring–Adhesive Selection. Research in Nondestructive Evaluation, 26(1), 23-42. doi:10.1080/09349847.2014.934575

Sun, H., Wang, Y., Qing, X., & Wu, Z. (2018). High Strain Survivability of Piezoceramics by Optimal Bonding Adhesive Design. Sensors, 18(8), 2554. doi:10.3390/s18082554

Alleyne, D., & Cawley, P. (1991). A two-dimensional Fourier transform method for the measurement of propagating multimode signals. The Journal of the Acoustical Society of America, 89(3), 1159-1168. doi:10.1121/1.400530

Bezdek, M., Joseph, K., & Tittmann, B. R. (2012). Low Attenuation Waveguide for Structural Health Monitoring with Leaky Surface Waves. Journal of the Korean Society for Nondestructive Testing, 32(3), 241-262. doi:10.7779/jksnt.2012.32.3.241

Harb, M. S., & Yuan, F. G. (2015). A rapid, fully non-contact, hybrid system for generating Lamb wave dispersion curves. Ultrasonics, 61, 62-70. doi:10.1016/j.ultras.2015.03.006

Castaings, M., & Cawley, P. (1996). The generation, propagation, and detection of Lamb waves in plates using air‐coupled ultrasonic transducers. The Journal of the Acoustical Society of America, 100(5), 3070-3077. doi:10.1121/1.417193

Alleyne, D. N., & Cawley, P. (1992). The interaction of Lamb waves with defects. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 39(3), 381-397. doi:10.1109/58.143172

Lee, K. I., & Yoon, S. W. (2004). Feasibility of bone assessment with leaky Lamb waves in bone phantoms and a bovine tibia. The Journal of the Acoustical Society of America, 115(6), 3210-3217. doi:10.1121/1.1707086

Yung-Chun Lee, & Sheng-Wen Cheng. (2001). Measuring Lamb wave dispersion curves of a bi-layered plate and its application on material characterization of coating. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 48(3), 830-837. doi:10.1109/58.920717

Briers, R., Leroy, O., & Shkerdin, G. (1997). A liquid wedge as generating technique for Lamb and Rayleigh waves. The Journal of the Acoustical Society of America, 102(4), 2117-2124. doi:10.1121/1.419629

HAYASHI, T., & KAWASHIMA, K. (2003). Single Mode Extraction from Multiple Modes of Lamb Wave and Its Application to Defect Detection. JSME International Journal Series A, 46(4), 620-626. doi:10.1299/jsmea.46.620

Gosálbez, J., Wright, W. M. D., Jiang, W., Carrión, A., Genovés, V., & Bosch, I. (2018). Airborne non-contact and contact broadband ultrasounds for frequency attenuation profile estimation of cementitious materials. Ultrasonics, 88, 148-156. doi:10.1016/j.ultras.2018.03.011

Schindel, D. W., Hutchins, D. A., & Grandia, W. A. (1996). Capacitive and piezoelectric air-coupled transducers for resonant ultrasonic inspection. Ultrasonics, 34(6), 621-627. doi:10.1016/0041-624x(96)00063-7

Schindel, D. W., & Hutchins, D. A. (1995). Through-thickness characterization of solids by wideband air-coupled ultrasound. Ultrasonics, 33(1), 11-17. doi:10.1016/0041-624x(95)00011-q

Fan, Z., Jiang, W., & Wright, W. M. D. (2018). Non-contact ultrasonic gas flow metering using air-coupled leaky Lamb waves. Ultrasonics, 89, 74-83. doi:10.1016/j.ultras.2018.04.008

Fan, Z., Jiang, W., Cai, M., & Wright, W. M. D. (2016). The effects of air gap reflections during air-coupled leaky Lamb wave inspection of thin plates. Ultrasonics, 65, 282-295. doi:10.1016/j.ultras.2015.09.013

Zhao, M., Zeng, L., Lin, J., & Wu, W. (2014). Mode identification and extraction of broadband ultrasonic guided waves. Measurement Science and Technology, 25(11), 115005. doi:10.1088/0957-0233/25/11/115005

Lee, Y., & Oh, T. (2016). The Simple Lamb Wave Analysis to Characterize Concrete Wide Beams by the Practical MASW Test. Materials, 9(6), 437. doi:10.3390/ma9060437

Schaal, C., Samajder, H., Baid, H., & Mal, A. (2015). Rayleigh to Lamb wave conversion at a delamination-like crack. Journal of Sound and Vibration, 353, 150-163. doi:10.1016/j.jsv.2015.05.016

Rui Zhang, Mingxi Wan, & Wenwu Cao. (2001). Parameter measurement of thin elastic layers using low-frequency multi-mode ultrasonic lamb waves. IEEE Transactions on Instrumentation and Measurement, 50(5), 1397-1403. doi:10.1109/19.963216

Balasubramaniam, K., & Rose, J. L. (1991). Physically Based Dispersion Curve Feature Analysis in the NDE of Composites. Research in Nondestructive Evaluation, 3(1), 41-67. doi:10.1080/09349849109409501

Niethammer, M., Jacobs, L. J., Qu, J., & Jarzynski, J. (2001). Time-frequency representations of Lamb waves. The Journal of the Acoustical Society of America, 109(5), 1841-1847. doi:10.1121/1.1357813

Kuttig, H., Niethammer, M., Hurlebaus, S., & Jacobs, L. J. (2006). Model-based analysis of dispersion curves using chirplets. The Journal of the Acoustical Society of America, 119(4), 2122-2130. doi:10.1121/1.2177587

Prosser, W. H., Seale, M. D., & Smith, B. T. (1999). Time-frequency analysis of the dispersion of Lamb modes. The Journal of the Acoustical Society of America, 105(5), 2669-2676. doi:10.1121/1.426883

Genovés, V., Gosálbez, J., Carrión, A., Miralles, R., & Payá, J. (2016). Optimized ultrasonic attenuation measures for non-homogeneous materials. Ultrasonics, 65, 345-352. doi:10.1016/j.ultras.2015.09.007

Alleyne, D. N., & Cawley, P. (1996). The excitation of Lamb waves in pipes using dry-coupled piezoelectric transducers. Journal of Nondestructive Evaluation, 15(1), 11-20. doi:10.1007/bf00733822

Ruiz, A., Ortiz, N., Medina, A., Kim, J.-Y., & Jacobs, L. J. (2013). Application of ultrasonic methods for early detection of thermal damage in 2205 duplex stainless steel. NDT & E International, 54, 19-26. doi:10.1016/j.ndteint.2012.11.009

Goueygou, M., Piwakowski, B., Fnine, A., Kaczmarek, M., & Buyle-Bodin, F. (2004). NDE of two-layered mortar samples using high-frequency Rayleigh waves. Ultrasonics, 42(1-9), 889-895. doi:10.1016/j.ultras.2004.01.075

Kim, G., Kim, J.-Y., Kurtis, K. E., Jacobs, L. J., Le Pape, Y., & Guimaraes, M. (2014). Quantitative evaluation of carbonation in concrete using nonlinear ultrasound. Materials and Structures, 49(1-2), 399-409. doi:10.1617/s11527-014-0506-1

Carrión, A., Genovés, V., Pérez, G., Payá, J., & Gosálbez, J. (2018). Flipped Accumulative Non-Linear Single Impact Resonance Acoustic Spectroscopy (FANSIRAS): A novel feature extraction algorithm for global damage assessment. Journal of Sound and Vibration, 432, 454-469. doi:10.1016/j.jsv.2018.06.031

Greve, D. W., Zheng, P., & Oppenheim, I. J. (2008). The transition from Lamb waves to longitudinal waves in plates. Smart Materials and Structures, 17(3), 035029. doi:10.1088/0964-1726/17/3/035029

Li, F., Murayama, H., Kageyama, K., & Shirai, T. (2009). Guided Wave and Damage Detection in Composite Laminates Using Different Fiber Optic Sensors. Sensors, 9(5), 4005-4021. doi:10.3390/s90504005

Yan-Xun, X., Fu-Zhen, X., & Ming-Xi, D. (2010). Evaluation of Thermal Degradation Induced Material Damage Using Nonlinear Lamb Waves. Chinese Physics Letters, 27(1), 016202. doi:10.1088/0256-307x/27/1/016202

Carrión, A., Genovés, V., Gosálbez, J., Miralles, R., & Payá, J. (2017). Ultrasonic signal modality: A novel approach for concrete damage evaluation. Cement and Concrete Research, 101, 25-32. doi:10.1016/j.cemconres.2017.08.011

Goueygou, M., Lafhaj, Z., & Soltani, F. (2009). Assessment of porosity of mortar using ultrasonic Rayleigh waves. NDT & E International, 42(5), 353-360. doi:10.1016/j.ndteint.2009.01.002

Sancho-Knapik, D., Calas, H., Peguero-Pina, J. J., Ramos Fernandez, A., Gil-Pelegrin, E., & Alvarez-Arenas, T. E. G. (2012). Air-coupled ultrasonic resonant spectroscopy for the study of the relationship between plant leaves’ elasticity and their water content. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 59(2), 319-325. doi:10.1109/tuffc.2012.2194

Neuenschwander, J., Schmidt, T., Lüthi, T., & Romer, M. (2006). Leaky Rayleigh wave investigation on mortar samples. Ultrasonics, 45(1-4), 50-55. doi:10.1016/j.ultras.2006.06.002

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record