- -

Comparative Study of Coupling Techniques in Lamb Wave Testing of Metallic and Cementitious Plates

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Comparative Study of Coupling Techniques in Lamb Wave Testing of Metallic and Cementitious Plates

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vazquez-Martinez, Santiago es_ES
dc.contributor.author Gosálbez Castillo, Jorge es_ES
dc.contributor.author Bosch Roig, Ignacio es_ES
dc.contributor.author CARRIÓN GARCÍA, ALICIA es_ES
dc.contributor.author Gallardo-Llopis, Carles es_ES
dc.contributor.author Paya Bernabeu, Jorge Juan es_ES
dc.date.accessioned 2020-05-21T03:01:33Z
dc.date.available 2020-05-21T03:01:33Z
dc.date.issued 2019-09-20 es_ES
dc.identifier.uri http://hdl.handle.net/10251/143874
dc.description.abstract [Otros] Lamb waves have emerged as a valuable tool to examine long plate-like structures in a faster way compared to conventional bulk wave techniques, which make them attractive in non-destructive testing. However, they present a multimodal and dispersive nature, which hinders signal identification. Oblique incidence is one of the most known methods to generate and receive Lamb waves and it is applied in different experimental arrangements with different types of sensors. In this work, several setups were conducted and compared to determine the optimal ones to launch and detect ultrasonic Lamb waves, especially in non-homogeneous specimens. The chosen arrangements were contact with angle beam transducers, immersion in a water tank, localised water coupling using conical containers and air coupling. Plates of two different materials were used, stainless steel and Portland cement mortar. Theoretical and experimental dispersion curves were compared to verify the existence of Lamb modes and good correspondence was achieved. es_ES
dc.description.sponsorship This research was funded by the Spanish Administration, grants number BES-2015-071958 and BIA2017-87573-C2. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Non-destructive testing es_ES
dc.subject Ultrasound es_ES
dc.subject Signal processing es_ES
dc.subject Lamb waves es_ES
dc.subject Dispersion curves es_ES
dc.subject Angle beam wedge transducers es_ES
dc.subject Immersion technique es_ES
dc.subject Air-coupled es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.subject.classification INGENIERIA DE LA CONSTRUCCION es_ES
dc.title Comparative Study of Coupling Techniques in Lamb Wave Testing of Metallic and Cementitious Plates es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s19194068 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2015-071958/ES/BES-2015-071958/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-87573-C2-1-P/ES/DESARROLLO Y APLICACION DE ENSAYOS NO DESTRUCTIVOS BASADOS EN ONDAS MECANICAS PARA LA EVALUACION Y MONITORIZACION DE REOLOGIA Y AUTOSANACION EN MATERIALES CEMENTANTES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/BIA2017-87573-C2-2-P/ES/DESARROLLO Y APLICACION DE ENSAYOS NO DESTRUCTIVOS BASADOS EN ONDAS MECANICAS PARA LA EVALUACION Y MONITORIZACION DE REOLOGIA Y AUTOSANACION EN MATERIALES CEMENTANTES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Vazquez-Martinez, S.; Gosálbez Castillo, J.; Bosch Roig, I.; Carrión García, A.; Gallardo-Llopis, C.; Paya Bernabeu, JJ. (2019). Comparative Study of Coupling Techniques in Lamb Wave Testing of Metallic and Cementitious Plates. Sensors. 19(19):1-30. https://doi.org/10.3390/s19194068 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s19194068 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 30 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 19 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 31547155 es_ES
dc.identifier.pmcid PMC6806287 es_ES
dc.relation.pasarela S\393989 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.description.references Birgani, P. T., Tahan, K. N., Sodagar, S., & Shishesaz, M. (2015). Theoretical modeling of low-attenuation lamb wave modes generation in three-layer adhesive joints using angle beam transducer. Latin American Journal of Solids and Structures, 12(3), 461-476. doi:10.1590/1679-78251143 es_ES
dc.description.references Seale, M. D., Smith, B. T., & Prosser, W. H. (1998). Lamb wave assessment of fatigue and thermal damage in composites. The Journal of the Acoustical Society of America, 103(5), 2416-2424. doi:10.1121/1.422761 es_ES
dc.description.references Alleyne, D. N., & Cawley, P. (1992). Optimization of lamb wave inspection techniques. NDT & E International, 25(1), 11-22. doi:10.1016/0963-8695(92)90003-y es_ES
dc.description.references Cawley, P., & Alleyne, D. (1996). The use of Lamb waves for the long range inspection of large structures. Ultrasonics, 34(2-5), 287-290. doi:10.1016/0041-624x(96)00024-8 es_ES
dc.description.references Sharma, S., & Mukherjee, A. (2014). A Non-Contact Technique for Damage Monitoring in Submerged Plates Using Guided Waves. Journal of Testing and Evaluation, 43(4), 20120357. doi:10.1520/jte20120357 es_ES
dc.description.references Jia, X. (1997). Modal analysis of Lamb wave generation in elastic plates by liquid wedge transducers. The Journal of the Acoustical Society of America, 101(2), 834-842. doi:10.1121/1.418041 es_ES
dc.description.references Shelke, A., Kundu, T., Amjad, U., Hahn, K., & Grill, W. (2011). Mode-selective excitation and detection of ultrasonic guided waves for delamination detection in laminated aluminum plates. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 58(3), 567-577. doi:10.1109/tuffc.2011.1839 es_ES
dc.description.references Chen, J., Su, Z., & Cheng, L. (2009). Identification of corrosion damage in submerged structures using fundamental anti-symmetric Lamb waves. Smart Materials and Structures, 19(1), 015004. doi:10.1088/0964-1726/19/1/015004 es_ES
dc.description.references Benz, R., Niethammer, M., Hurlebaus, S., & Jacobs, L. J. (2003). Localization of notches with Lamb waves. The Journal of the Acoustical Society of America, 114(2), 677-685. doi:10.1121/1.1593058 es_ES
dc.description.references Guo, N., & Cawley, P. (1993). The interaction of Lamb waves with delaminations in composite laminates. The Journal of the Acoustical Society of America, 94(4), 2240-2246. doi:10.1121/1.407495 es_ES
dc.description.references Xu, K., Ta, D., Moilanen, P., & Wang, W. (2012). Mode separation of Lamb waves based on dispersion compensation method. The Journal of the Acoustical Society of America, 131(4), 2714-2722. doi:10.1121/1.3685482 es_ES
dc.description.references Guo, D., & Kundu, T. (2001). A new transducer holder mechanism for pipe inspection. The Journal of the Acoustical Society of America, 110(1), 303-309. doi:10.1121/1.1377289 es_ES
dc.description.references Ghosh, T., Kundu, T., & Karpur, P. (1998). Efficient use of Lamb modes for detecting defects in large plates. Ultrasonics, 36(7), 791-801. doi:10.1016/s0041-624x(98)00012-2 es_ES
dc.description.references Giurgiutiu, V. (2005). Tuned Lamb Wave Excitation and Detection with Piezoelectric Wafer Active Sensors for Structural Health Monitoring. Journal of Intelligent Material Systems and Structures, 16(4), 291-305. doi:10.1177/1045389x05050106 es_ES
dc.description.references Rguiti, M., Grondel, S., El youbi, F., Courtois, C., Lippert, M., & Leriche, A. (2006). Optimized piezoelectric sensor for a specific application: Detection of Lamb waves. Sensors and Actuators A: Physical, 126(2), 362-368. doi:10.1016/j.sna.2005.10.015 es_ES
dc.description.references Kessler, S. S., Spearing, S. M., & Soutis, C. (2002). Damage detection in composite materials using Lamb wave methods. Smart Materials and Structures, 11(2), 269-278. doi:10.1088/0964-1726/11/2/310 es_ES
dc.description.references Mustapha, S., & Ye, L. (2015). Bonding Piezoelectric Wafers for Application in Structural Health Monitoring–Adhesive Selection. Research in Nondestructive Evaluation, 26(1), 23-42. doi:10.1080/09349847.2014.934575 es_ES
dc.description.references Sun, H., Wang, Y., Qing, X., & Wu, Z. (2018). High Strain Survivability of Piezoceramics by Optimal Bonding Adhesive Design. Sensors, 18(8), 2554. doi:10.3390/s18082554 es_ES
dc.description.references Alleyne, D., & Cawley, P. (1991). A two-dimensional Fourier transform method for the measurement of propagating multimode signals. The Journal of the Acoustical Society of America, 89(3), 1159-1168. doi:10.1121/1.400530 es_ES
dc.description.references Bezdek, M., Joseph, K., & Tittmann, B. R. (2012). Low Attenuation Waveguide for Structural Health Monitoring with Leaky Surface Waves. Journal of the Korean Society for Nondestructive Testing, 32(3), 241-262. doi:10.7779/jksnt.2012.32.3.241 es_ES
dc.description.references Harb, M. S., & Yuan, F. G. (2015). A rapid, fully non-contact, hybrid system for generating Lamb wave dispersion curves. Ultrasonics, 61, 62-70. doi:10.1016/j.ultras.2015.03.006 es_ES
dc.description.references Castaings, M., & Cawley, P. (1996). The generation, propagation, and detection of Lamb waves in plates using air‐coupled ultrasonic transducers. The Journal of the Acoustical Society of America, 100(5), 3070-3077. doi:10.1121/1.417193 es_ES
dc.description.references Alleyne, D. N., & Cawley, P. (1992). The interaction of Lamb waves with defects. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 39(3), 381-397. doi:10.1109/58.143172 es_ES
dc.description.references Lee, K. I., & Yoon, S. W. (2004). Feasibility of bone assessment with leaky Lamb waves in bone phantoms and a bovine tibia. The Journal of the Acoustical Society of America, 115(6), 3210-3217. doi:10.1121/1.1707086 es_ES
dc.description.references Yung-Chun Lee, & Sheng-Wen Cheng. (2001). Measuring Lamb wave dispersion curves of a bi-layered plate and its application on material characterization of coating. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 48(3), 830-837. doi:10.1109/58.920717 es_ES
dc.description.references Briers, R., Leroy, O., & Shkerdin, G. (1997). A liquid wedge as generating technique for Lamb and Rayleigh waves. The Journal of the Acoustical Society of America, 102(4), 2117-2124. doi:10.1121/1.419629 es_ES
dc.description.references HAYASHI, T., & KAWASHIMA, K. (2003). Single Mode Extraction from Multiple Modes of Lamb Wave and Its Application to Defect Detection. JSME International Journal Series A, 46(4), 620-626. doi:10.1299/jsmea.46.620 es_ES
dc.description.references Gosálbez, J., Wright, W. M. D., Jiang, W., Carrión, A., Genovés, V., & Bosch, I. (2018). Airborne non-contact and contact broadband ultrasounds for frequency attenuation profile estimation of cementitious materials. Ultrasonics, 88, 148-156. doi:10.1016/j.ultras.2018.03.011 es_ES
dc.description.references Schindel, D. W., Hutchins, D. A., & Grandia, W. A. (1996). Capacitive and piezoelectric air-coupled transducers for resonant ultrasonic inspection. Ultrasonics, 34(6), 621-627. doi:10.1016/0041-624x(96)00063-7 es_ES
dc.description.references Schindel, D. W., & Hutchins, D. A. (1995). Through-thickness characterization of solids by wideband air-coupled ultrasound. Ultrasonics, 33(1), 11-17. doi:10.1016/0041-624x(95)00011-q es_ES
dc.description.references Fan, Z., Jiang, W., & Wright, W. M. D. (2018). Non-contact ultrasonic gas flow metering using air-coupled leaky Lamb waves. Ultrasonics, 89, 74-83. doi:10.1016/j.ultras.2018.04.008 es_ES
dc.description.references Fan, Z., Jiang, W., Cai, M., & Wright, W. M. D. (2016). The effects of air gap reflections during air-coupled leaky Lamb wave inspection of thin plates. Ultrasonics, 65, 282-295. doi:10.1016/j.ultras.2015.09.013 es_ES
dc.description.references Zhao, M., Zeng, L., Lin, J., & Wu, W. (2014). Mode identification and extraction of broadband ultrasonic guided waves. Measurement Science and Technology, 25(11), 115005. doi:10.1088/0957-0233/25/11/115005 es_ES
dc.description.references Lee, Y., & Oh, T. (2016). The Simple Lamb Wave Analysis to Characterize Concrete Wide Beams by the Practical MASW Test. Materials, 9(6), 437. doi:10.3390/ma9060437 es_ES
dc.description.references Schaal, C., Samajder, H., Baid, H., & Mal, A. (2015). Rayleigh to Lamb wave conversion at a delamination-like crack. Journal of Sound and Vibration, 353, 150-163. doi:10.1016/j.jsv.2015.05.016 es_ES
dc.description.references Rui Zhang, Mingxi Wan, & Wenwu Cao. (2001). Parameter measurement of thin elastic layers using low-frequency multi-mode ultrasonic lamb waves. IEEE Transactions on Instrumentation and Measurement, 50(5), 1397-1403. doi:10.1109/19.963216 es_ES
dc.description.references Balasubramaniam, K., & Rose, J. L. (1991). Physically Based Dispersion Curve Feature Analysis in the NDE of Composites. Research in Nondestructive Evaluation, 3(1), 41-67. doi:10.1080/09349849109409501 es_ES
dc.description.references Niethammer, M., Jacobs, L. J., Qu, J., & Jarzynski, J. (2001). Time-frequency representations of Lamb waves. The Journal of the Acoustical Society of America, 109(5), 1841-1847. doi:10.1121/1.1357813 es_ES
dc.description.references Kuttig, H., Niethammer, M., Hurlebaus, S., & Jacobs, L. J. (2006). Model-based analysis of dispersion curves using chirplets. The Journal of the Acoustical Society of America, 119(4), 2122-2130. doi:10.1121/1.2177587 es_ES
dc.description.references Prosser, W. H., Seale, M. D., & Smith, B. T. (1999). Time-frequency analysis of the dispersion of Lamb modes. The Journal of the Acoustical Society of America, 105(5), 2669-2676. doi:10.1121/1.426883 es_ES
dc.description.references Genovés, V., Gosálbez, J., Carrión, A., Miralles, R., & Payá, J. (2016). Optimized ultrasonic attenuation measures for non-homogeneous materials. Ultrasonics, 65, 345-352. doi:10.1016/j.ultras.2015.09.007 es_ES
dc.description.references Alleyne, D. N., & Cawley, P. (1996). The excitation of Lamb waves in pipes using dry-coupled piezoelectric transducers. Journal of Nondestructive Evaluation, 15(1), 11-20. doi:10.1007/bf00733822 es_ES
dc.description.references Ruiz, A., Ortiz, N., Medina, A., Kim, J.-Y., & Jacobs, L. J. (2013). Application of ultrasonic methods for early detection of thermal damage in 2205 duplex stainless steel. NDT & E International, 54, 19-26. doi:10.1016/j.ndteint.2012.11.009 es_ES
dc.description.references Goueygou, M., Piwakowski, B., Fnine, A., Kaczmarek, M., & Buyle-Bodin, F. (2004). NDE of two-layered mortar samples using high-frequency Rayleigh waves. Ultrasonics, 42(1-9), 889-895. doi:10.1016/j.ultras.2004.01.075 es_ES
dc.description.references Kim, G., Kim, J.-Y., Kurtis, K. E., Jacobs, L. J., Le Pape, Y., & Guimaraes, M. (2014). Quantitative evaluation of carbonation in concrete using nonlinear ultrasound. Materials and Structures, 49(1-2), 399-409. doi:10.1617/s11527-014-0506-1 es_ES
dc.description.references Carrión, A., Genovés, V., Pérez, G., Payá, J., & Gosálbez, J. (2018). Flipped Accumulative Non-Linear Single Impact Resonance Acoustic Spectroscopy (FANSIRAS): A novel feature extraction algorithm for global damage assessment. Journal of Sound and Vibration, 432, 454-469. doi:10.1016/j.jsv.2018.06.031 es_ES
dc.description.references Greve, D. W., Zheng, P., & Oppenheim, I. J. (2008). The transition from Lamb waves to longitudinal waves in plates. Smart Materials and Structures, 17(3), 035029. doi:10.1088/0964-1726/17/3/035029 es_ES
dc.description.references Li, F., Murayama, H., Kageyama, K., & Shirai, T. (2009). Guided Wave and Damage Detection in Composite Laminates Using Different Fiber Optic Sensors. Sensors, 9(5), 4005-4021. doi:10.3390/s90504005 es_ES
dc.description.references Yan-Xun, X., Fu-Zhen, X., & Ming-Xi, D. (2010). Evaluation of Thermal Degradation Induced Material Damage Using Nonlinear Lamb Waves. Chinese Physics Letters, 27(1), 016202. doi:10.1088/0256-307x/27/1/016202 es_ES
dc.description.references Carrión, A., Genovés, V., Gosálbez, J., Miralles, R., & Payá, J. (2017). Ultrasonic signal modality: A novel approach for concrete damage evaluation. Cement and Concrete Research, 101, 25-32. doi:10.1016/j.cemconres.2017.08.011 es_ES
dc.description.references Goueygou, M., Lafhaj, Z., & Soltani, F. (2009). Assessment of porosity of mortar using ultrasonic Rayleigh waves. NDT & E International, 42(5), 353-360. doi:10.1016/j.ndteint.2009.01.002 es_ES
dc.description.references Sancho-Knapik, D., Calas, H., Peguero-Pina, J. J., Ramos Fernandez, A., Gil-Pelegrin, E., & Alvarez-Arenas, T. E. G. (2012). Air-coupled ultrasonic resonant spectroscopy for the study of the relationship between plant leaves’ elasticity and their water content. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 59(2), 319-325. doi:10.1109/tuffc.2012.2194 es_ES
dc.description.references Neuenschwander, J., Schmidt, T., Lüthi, T., & Romer, M. (2006). Leaky Rayleigh wave investigation on mortar samples. Ultrasonics, 45(1-4), 50-55. doi:10.1016/j.ultras.2006.06.002 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem