Mostrar el registro sencillo del ítem
dc.contributor.author | Aliaga Franco, Norma | es_ES |
dc.contributor.author | Zhang, Cunjin | es_ES |
dc.contributor.author | Presa Castro, Silvia | es_ES |
dc.contributor.author | Srivastava, Anjil K. | es_ES |
dc.contributor.author | GRANELL RICHART, ANTONIO | es_ES |
dc.contributor.author | ALABADÍ DIEGO, DAVID | es_ES |
dc.contributor.author | Sadanandom, Ari | es_ES |
dc.contributor.author | BLAZQUEZ RODRIGUEZ, MIGUEL ANGEL | es_ES |
dc.contributor.author | Minguet, E.G. | es_ES |
dc.date.accessioned | 2020-05-21T03:02:15Z | |
dc.date.available | 2020-05-21T03:02:15Z | |
dc.date.issued | 2019-09-18 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/143883 | |
dc.description.abstract | [EN] Efficient elimination of the editing machinery remains a challenge in plant biotechnology after genome editing to minimize the probability of off-target mutations, but it is also important to deliver end users with edited plants free of foreign DNA. Using the modular cloning system Golden Braid, we have included a fluorescence-dependent transgene monitoring module to the genome-editing tool box. We have tested this approach in Solanum lycopersicum, Oryza sativa, and Arabidopsis thaliana. We demonstrate that DsRED fluorescence visualization works efficiently in dry seeds as marker for the detection of the transgene in the three species allowing an efficient method for selecting transgene-free dry seeds. In the first generation of DsRED-free CRISPR/Cas9 null segregants, we detected gene editing of selected targets including homozygous mutants for the plant species tested. We demonstrate that this strategy allows rapid selection of transgene-free homozygous edited crop plants in a single generation after in vitro transformation. | es_ES |
dc.description.sponsorship | Grants AGL2014-57200-JIN (EGM), BFU2016-80621-P (MB), and BIO2016-78601-R (AG) from the current Spanish Ministry of Science, Innovation and Universities. Grants TRADITOM (634561), TomGEM (679796), Newcotiana (760331-2) and Pharma-Factory (SEP-210417525) from European Union H2020 program (AG). ERC grant "SUMOrice" and BBSRC grant "Flooding tolerance in rice" (AS). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Frontiers Media SA | es_ES |
dc.relation.ispartof | Frontiers in Plant Science | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | CRISPR/Cas9 | es_ES |
dc.subject | Genome editing | es_ES |
dc.subject | DsRED | es_ES |
dc.subject | Solanum lycopersicum | es_ES |
dc.subject | Oryza sativa | es_ES |
dc.subject | Arabidopsis thaliana | es_ES |
dc.title | Identification of Transgene-Free CRISPR-Edited Plants of Rice, Tomato, and Arabidopsis by Monitoring DsRED Fluorescence in Dry Seeds | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3389/fpls.2019.01150 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/310235/EU/SUMOrice: Exploiting an emerging protein modification system, SUMOylation to boost rice yield during drought and salt stress/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2014-57200-JIN/ES/MEJORA DE LA PRODUCTIVIDAD DE LOS CULTIVOS AGRICOLAS EN CONDICIONES DE ESTRES POR ALTAS TEMPERATURAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/634561/EU/Traditional tomato varieties and cultural practices: a case for agricultural diversification with impact on food security and health of European population/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIO2016-78601-R/ES/DISEÑO DE CIRCUITOS GENICOS SINTETICOS Y ORTOGONALES PARA PLANTAS MEDIANTE EL USO DE FACTORES PROGRAMABLES DE UNION A DNA BASADOS EN LA ARQUITECTURA CRISPR-CAS9./ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/679796/EU/A holistic multi-actor approach towards the design of new tomato varieties and management practices to improve yield and quality in the face of climate change/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2016-80621-P/ES/ANÁLISIS EVOLUTIVO DE UN 'HUB' FUNCIONAL EN PLANTAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/760331/EU/Developing Multipurpose Nicotiana Crops for Molecular Farming using New Plant Breeding Techniques/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/774078/EU/Building the product pipeline for commercial demonstration of Plant Molecular Factories/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal | es_ES |
dc.description.bibliographicCitation | Aliaga Franco, N.; Zhang, C.; Presa Castro, S.; Srivastava, AK.; Granell Richart, A.; Alabadí Diego, D.; Sadanandom, A.... (2019). Identification of Transgene-Free CRISPR-Edited Plants of Rice, Tomato, and Arabidopsis by Monitoring DsRED Fluorescence in Dry Seeds. Frontiers in Plant Science. 10:1-9. https://doi.org/10.3389/fpls.2019.01150 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3389/fpls.2019.01150 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 9 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.identifier.eissn | 1664-462X | es_ES |
dc.identifier.pmid | 31620160 | es_ES |
dc.identifier.pmcid | PMC6759815 | es_ES |
dc.relation.pasarela | S\406588 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Biotechnology and Biological Sciences Research Council, Reino Unido | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Abbas, M., Hernández-García, J., Pollmann, S., Samodelov, S. L., Kolb, M., Friml, J., … Alabadí, D. (2018). Auxin methylation is required for differential growth inArabidopsis. Proceedings of the National Academy of Sciences, 115(26), 6864-6869. doi:10.1073/pnas.1806565115 | es_ES |
dc.description.references | Bechtold, N., & Pelletier, G. (1998). In Planta AgrobacteriumMediated Transformation of Adult Arabidopsis thaliana Plants by Vacuum Infiltration. Arabidopsis Protocols, 259-266. doi:10.1385/0-89603-391-0:259 | es_ES |
dc.description.references | Bernabé‐Orts, J. M., Casas‐Rodrigo, I., Minguet, E. G., Landolfi, V., Garcia‐Carpintero, V., Gianoglio, S., … Orzaez, D. (2019). Assessment of Cas12a‐mediated gene editing efficiency in plants. Plant Biotechnology Journal, 17(10), 1971-1984. doi:10.1111/pbi.13113 | es_ES |
dc.description.references | Bolotin, A., Quinquis, B., Sorokin, A., & Ehrlich, S. D. (2005). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 151(8), 2551-2561. doi:10.1099/mic.0.28048-0 | es_ES |
dc.description.references | Brinkman, E. K., Chen, T., Amendola, M., & van Steensel, B. (2014). Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Research, 42(22), e168-e168. doi:10.1093/nar/gku936 | es_ES |
dc.description.references | Busov, V. B., Brunner, A. M., Meilan, R., Filichkin, S., Ganio, L., Gandhi, S., & Strauss, S. H. (2005). Genetic transformation: a powerful tool for dissection of adaptive traits in trees. New Phytologist, 167(1), 9-18. doi:10.1111/j.1469-8137.2005.01412.x | es_ES |
dc.description.references | Campenhout, C. V., Cabochette, P., Veillard, A.-C., Laczik, M., Zelisko-Schmidt, A., Sabatel, C., … Kruys, V. (2019). Guidelines for optimized gene knockout using CRISPR/Cas9. BioTechniques, 66(6), 295-302. doi:10.2144/btn-2018-0187 | es_ES |
dc.description.references | Durr, J., Papareddy, R., Nakajima, K., & Gutierrez-Marcos, J. (2018). Highly efficient heritable targeted deletions of gene clusters and non-coding regulatory regions in Arabidopsis using CRISPR/Cas9. Scientific Reports, 8(1). doi:10.1038/s41598-018-22667-1 | es_ES |
dc.description.references | Edwards, K., Johnstone, C., & Thompson, C. (1991). A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Research, 19(6), 1349-1349. doi:10.1093/nar/19.6.1349 | es_ES |
dc.description.references | Ellul, P., Garcia-Sogo, B., Pineda, B., Ríos, G., Roig, L., & Moreno, V. (2003). The ploidy level of transgenic plants in Agrobacterium-mediated transformation of tomato cotyledons (Lycopersicon esculentum L.Mill.) is genotype and procedure dependent. Theoretical and Applied Genetics, 106(2), 231-238. doi:10.1007/s00122-002-0928-y | es_ES |
dc.description.references | Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D.-L., Wei, P., … Zhu, J.-K. (2013). Efficient genome editing in plants using a CRISPR/Cas system. Cell Research, 23(10), 1229-1232. doi:10.1038/cr.2013.114 | es_ES |
dc.description.references | Fernandez-Pozo, N., Menda, N., Edwards, J. D., Saha, S., Tecle, I. Y., Strickler, S. R., … Mueller, L. A. (2014). The Sol Genomics Network (SGN)—from genotype to phenotype to breeding. Nucleic Acids Research, 43(D1), D1036-D1041. doi:10.1093/nar/gku1195 | es_ES |
dc.description.references | Gao, X., Chen, J., Dai, X., Zhang, D., & Zhao, Y. (2016). An Effective Strategy for Reliably Isolating Heritable and Cas9-Free Arabidopsis Mutants Generated by CRISPR/Cas9-Mediated Genome Editing. Plant Physiology, 171(3), 1794-1800. doi:10.1104/pp.16.00663 | es_ES |
dc.description.references | Hiei, Y., & Komari, T. (2008). Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nature Protocols, 3(5), 824-834. doi:10.1038/nprot.2008.46 | es_ES |
dc.description.references | Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B., & Weeks, D. P. (2013). Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research, 41(20), e188-e188. doi:10.1093/nar/gkt780 | es_ES |
dc.description.references | Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science, 337(6096), 816-821. doi:10.1126/science.1225829 | es_ES |
dc.description.references | Kroj, T. (2003). Regulation of storage protein gene expression in Arabidopsis. Development, 130(24), 6065-6073. doi:10.1242/dev.00814 | es_ES |
dc.description.references | Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., … Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947-2948. doi:10.1093/bioinformatics/btm404 | es_ES |
dc.description.references | McVey, M., & Lee, S. E. (2008). MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends in Genetics, 24(11), 529-538. doi:10.1016/j.tig.2008.08.007 | es_ES |
dc.description.references | Mojica, F. J. M., D�ez-Villase�or, C., Garc�a-Mart�nez, J., & Soria, E. (2005). Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements. Journal of Molecular Evolution, 60(2), 174-182. doi:10.1007/s00239-004-0046-3 | es_ES |
dc.description.references | Morineau, C., Bellec, Y., Tellier, F., Gissot, L., Kelemen, Z., Nogué, F., & Faure, J.-D. (2017). Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid Camelina sativa. Plant Biotechnology Journal, 15(6), 729-739. doi:10.1111/pbi.12671 | es_ES |
dc.description.references | Murray, M. G., & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8(19), 4321-4326. doi:10.1093/nar/8.19.4321 | es_ES |
dc.description.references | Okada, A., Arndell, T., Borisjuk, N., Sharma, N., Watson‐Haigh, N. S., Tucker, E. J., … Whitford, R. (2019). CRISPR /Cas9‐mediated knockout of Ms1 enables the rapid generation of male‐sterile hexaploid wheat lines for use in hybrid seed production. Plant Biotechnology Journal, 17(10), 1905-1913. doi:10.1111/pbi.13106 | es_ES |
dc.description.references | Qin, G., Gu, H., Zhao, Y., Ma, Z., Shi, G., Yang, Y., … Qu, L.-J. (2005). An Indole-3-Acetic Acid Carboxyl Methyltransferase Regulates Arabidopsis Leaf Development. The Plant Cell, 17(10), 2693-2704. doi:10.1105/tpc.105.034959 | es_ES |
dc.description.references | Ravi, M., Marimuthu, M. P. A., Tan, E. H., Maheshwari, S., Henry, I. M., Marin-Rodriguez, B., … Chan, S. W. L. (2014). A haploid genetics toolbox for Arabidopsis thaliana. Nature Communications, 5(1). doi:10.1038/ncomms6334 | es_ES |
dc.description.references | Sarrion-Perdigones, A., Vazquez-Vilar, M., Palaci, J., Castelijns, B., Forment, J., Ziarsolo, P., … Orzaez, D. (2013). GoldenBraid 2.0: A Comprehensive DNA Assembly Framework for Plant Synthetic Biology. PLANT PHYSIOLOGY, 162(3), 1618-1631. doi:10.1104/pp.113.217661 | es_ES |
dc.description.references | Shimada, T. L., Shimada, T., & Hara-Nishimura, I. (2010). A rapid and non-destructive screenable marker, FAST, for identifying transformed seeds ofArabidopsis thaliana. The Plant Journal, 61(3), 519-528. doi:10.1111/j.1365-313x.2009.04060.x | es_ES |
dc.description.references | Toki, S., Hara, N., Ono, K., Onodera, H., Tagiri, A., Oka, S., & Tanaka, H. (2006). Early infection of scutellum tissue withAgrobacteriumallows high-speed transformation of rice. The Plant Journal, 47(6), 969-976. doi:10.1111/j.1365-313x.2006.02836.x | es_ES |
dc.description.references | Vazquez-Vilar, M., Bernabé-Orts, J. M., Fernandez-del-Carmen, A., Ziarsolo, P., Blanca, J., Granell, A., & Orzaez, D. (2016). A modular toolbox for gRNA–Cas9 genome engineering in plants based on the GoldenBraid standard. Plant Methods, 12(1). doi:10.1186/s13007-016-0101-2 | es_ES |
dc.description.references | Vazquez-Vilar, M., Sarrion-Perdigones, A., Ziarsolo, P., Blanca, J., Granell, A., & Orzaez, D. (2015). Software-Assisted Stacking of Gene Modules Using GoldenBraid 2.0 DNA-Assembly Framework. Plant Functional Genomics, 399-420. doi:10.1007/978-1-4939-2444-8_20 | es_ES |
dc.description.references | Wu, R., Lucke, M., Jang, Y., Zhu, W., Symeonidi, E., Wang, C., … Weigel, D. (2018). An efficient CRISPR vector toolbox for engineering large deletions in Arabidopsis thaliana. Plant Methods, 14(1). doi:10.1186/s13007-018-0330-7 | es_ES |
dc.description.references | Xie, K., Minkenberg, B., & Yang, Y. (2015). Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proceedings of the National Academy of Sciences, 112(11), 3570-3575. doi:10.1073/pnas.1420294112 | es_ES |
dc.description.references | Yau, Y.-Y., & Stewart, C. N. (2013). Less is more: strategies to remove marker genes from transgenic plants. BMC Biotechnology, 13(1). doi:10.1186/1472-6750-13-36 | es_ES |
dc.description.references | Yu, H., & Zhao, Y. (2019). Fluorescence Marker-Assisted Isolation of Cas9-Free and CRISPR-Edited Arabidopsis Plants. Plant Genome Editing with CRISPR Systems, 147-154. doi:10.1007/978-1-4939-8991-1_11 | es_ES |