- -

Identification of Transgene-Free CRISPR-Edited Plants of Rice, Tomato, and Arabidopsis by Monitoring DsRED Fluorescence in Dry Seeds

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Identification of Transgene-Free CRISPR-Edited Plants of Rice, Tomato, and Arabidopsis by Monitoring DsRED Fluorescence in Dry Seeds

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Aliaga Franco, Norma es_ES
dc.contributor.author Zhang, Cunjin es_ES
dc.contributor.author Presa Castro, Silvia es_ES
dc.contributor.author Srivastava, Anjil K. es_ES
dc.contributor.author GRANELL RICHART, ANTONIO es_ES
dc.contributor.author ALABADÍ DIEGO, DAVID es_ES
dc.contributor.author Sadanandom, Ari es_ES
dc.contributor.author BLAZQUEZ RODRIGUEZ, MIGUEL ANGEL es_ES
dc.contributor.author Minguet, E.G. es_ES
dc.date.accessioned 2020-05-21T03:02:15Z
dc.date.available 2020-05-21T03:02:15Z
dc.date.issued 2019-09-18 es_ES
dc.identifier.uri http://hdl.handle.net/10251/143883
dc.description.abstract [EN] Efficient elimination of the editing machinery remains a challenge in plant biotechnology after genome editing to minimize the probability of off-target mutations, but it is also important to deliver end users with edited plants free of foreign DNA. Using the modular cloning system Golden Braid, we have included a fluorescence-dependent transgene monitoring module to the genome-editing tool box. We have tested this approach in Solanum lycopersicum, Oryza sativa, and Arabidopsis thaliana. We demonstrate that DsRED fluorescence visualization works efficiently in dry seeds as marker for the detection of the transgene in the three species allowing an efficient method for selecting transgene-free dry seeds. In the first generation of DsRED-free CRISPR/Cas9 null segregants, we detected gene editing of selected targets including homozygous mutants for the plant species tested. We demonstrate that this strategy allows rapid selection of transgene-free homozygous edited crop plants in a single generation after in vitro transformation. es_ES
dc.description.sponsorship Grants AGL2014-57200-JIN (EGM), BFU2016-80621-P (MB), and BIO2016-78601-R (AG) from the current Spanish Ministry of Science, Innovation and Universities. Grants TRADITOM (634561), TomGEM (679796), Newcotiana (760331-2) and Pharma-Factory (SEP-210417525) from European Union H2020 program (AG). ERC grant "SUMOrice" and BBSRC grant "Flooding tolerance in rice" (AS). es_ES
dc.language Inglés es_ES
dc.publisher Frontiers Media SA es_ES
dc.relation.ispartof Frontiers in Plant Science es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject CRISPR/Cas9 es_ES
dc.subject Genome editing es_ES
dc.subject DsRED es_ES
dc.subject Solanum lycopersicum es_ES
dc.subject Oryza sativa es_ES
dc.subject Arabidopsis thaliana es_ES
dc.title Identification of Transgene-Free CRISPR-Edited Plants of Rice, Tomato, and Arabidopsis by Monitoring DsRED Fluorescence in Dry Seeds es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3389/fpls.2019.01150 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/310235/EU/SUMOrice: Exploiting an emerging protein modification system, SUMOylation to boost rice yield during drought and salt stress/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2014-57200-JIN/ES/MEJORA DE LA PRODUCTIVIDAD DE LOS CULTIVOS AGRICOLAS EN CONDICIONES DE ESTRES POR ALTAS TEMPERATURAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/634561/EU/Traditional tomato varieties and cultural practices: a case for agricultural diversification with impact on food security and health of European population/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2016-78601-R/ES/DISEÑO DE CIRCUITOS GENICOS SINTETICOS Y ORTOGONALES PARA PLANTAS MEDIANTE EL USO DE FACTORES PROGRAMABLES DE UNION A DNA BASADOS EN LA ARQUITECTURA CRISPR-CAS9./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/679796/EU/A holistic multi-actor approach towards the design of new tomato varieties and management practices to improve yield and quality in the face of climate change/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2016-80621-P/ES/ANÁLISIS EVOLUTIVO DE UN 'HUB' FUNCIONAL EN PLANTAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/760331/EU/Developing Multipurpose Nicotiana Crops for Molecular Farming using New Plant Breeding Techniques/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/774078/EU/Building the product pipeline for commercial demonstration of Plant Molecular Factories/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal es_ES
dc.description.bibliographicCitation Aliaga Franco, N.; Zhang, C.; Presa Castro, S.; Srivastava, AK.; Granell Richart, A.; Alabadí Diego, D.; Sadanandom, A.... (2019). Identification of Transgene-Free CRISPR-Edited Plants of Rice, Tomato, and Arabidopsis by Monitoring DsRED Fluorescence in Dry Seeds. Frontiers in Plant Science. 10:1-9. https://doi.org/10.3389/fpls.2019.01150 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3389/fpls.2019.01150 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.identifier.eissn 1664-462X es_ES
dc.identifier.pmid 31620160 es_ES
dc.identifier.pmcid PMC6759815 es_ES
dc.relation.pasarela S\406588 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Biotechnology and Biological Sciences Research Council, Reino Unido es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Abbas, M., Hernández-García, J., Pollmann, S., Samodelov, S. L., Kolb, M., Friml, J., … Alabadí, D. (2018). Auxin methylation is required for differential growth inArabidopsis. Proceedings of the National Academy of Sciences, 115(26), 6864-6869. doi:10.1073/pnas.1806565115 es_ES
dc.description.references Bechtold, N., & Pelletier, G. (1998). In Planta AgrobacteriumMediated Transformation of Adult Arabidopsis thaliana Plants by Vacuum Infiltration. Arabidopsis Protocols, 259-266. doi:10.1385/0-89603-391-0:259 es_ES
dc.description.references Bernabé‐Orts, J. M., Casas‐Rodrigo, I., Minguet, E. G., Landolfi, V., Garcia‐Carpintero, V., Gianoglio, S., … Orzaez, D. (2019). Assessment of Cas12a‐mediated gene editing efficiency in plants. Plant Biotechnology Journal, 17(10), 1971-1984. doi:10.1111/pbi.13113 es_ES
dc.description.references Bolotin, A., Quinquis, B., Sorokin, A., & Ehrlich, S. D. (2005). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 151(8), 2551-2561. doi:10.1099/mic.0.28048-0 es_ES
dc.description.references Brinkman, E. K., Chen, T., Amendola, M., & van Steensel, B. (2014). Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Research, 42(22), e168-e168. doi:10.1093/nar/gku936 es_ES
dc.description.references Busov, V. B., Brunner, A. M., Meilan, R., Filichkin, S., Ganio, L., Gandhi, S., & Strauss, S. H. (2005). Genetic transformation: a powerful tool for dissection of adaptive traits in trees. New Phytologist, 167(1), 9-18. doi:10.1111/j.1469-8137.2005.01412.x es_ES
dc.description.references Campenhout, C. V., Cabochette, P., Veillard, A.-C., Laczik, M., Zelisko-Schmidt, A., Sabatel, C., … Kruys, V. (2019). Guidelines for optimized gene knockout using CRISPR/Cas9. BioTechniques, 66(6), 295-302. doi:10.2144/btn-2018-0187 es_ES
dc.description.references Durr, J., Papareddy, R., Nakajima, K., & Gutierrez-Marcos, J. (2018). Highly efficient heritable targeted deletions of gene clusters and non-coding regulatory regions in Arabidopsis using CRISPR/Cas9. Scientific Reports, 8(1). doi:10.1038/s41598-018-22667-1 es_ES
dc.description.references Edwards, K., Johnstone, C., & Thompson, C. (1991). A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Research, 19(6), 1349-1349. doi:10.1093/nar/19.6.1349 es_ES
dc.description.references Ellul, P., Garcia-Sogo, B., Pineda, B., Ríos, G., Roig, L., & Moreno, V. (2003). The ploidy level of transgenic plants in Agrobacterium-mediated transformation of tomato cotyledons (Lycopersicon esculentum L.Mill.) is genotype and procedure dependent. Theoretical and Applied Genetics, 106(2), 231-238. doi:10.1007/s00122-002-0928-y es_ES
dc.description.references Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D.-L., Wei, P., … Zhu, J.-K. (2013). Efficient genome editing in plants using a CRISPR/Cas system. Cell Research, 23(10), 1229-1232. doi:10.1038/cr.2013.114 es_ES
dc.description.references Fernandez-Pozo, N., Menda, N., Edwards, J. D., Saha, S., Tecle, I. Y., Strickler, S. R., … Mueller, L. A. (2014). The Sol Genomics Network (SGN)—from genotype to phenotype to breeding. Nucleic Acids Research, 43(D1), D1036-D1041. doi:10.1093/nar/gku1195 es_ES
dc.description.references Gao, X., Chen, J., Dai, X., Zhang, D., & Zhao, Y. (2016). An Effective Strategy for Reliably Isolating Heritable and Cas9-Free Arabidopsis Mutants Generated by CRISPR/Cas9-Mediated Genome Editing. Plant Physiology, 171(3), 1794-1800. doi:10.1104/pp.16.00663 es_ES
dc.description.references Hiei, Y., & Komari, T. (2008). Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nature Protocols, 3(5), 824-834. doi:10.1038/nprot.2008.46 es_ES
dc.description.references Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B., & Weeks, D. P. (2013). Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research, 41(20), e188-e188. doi:10.1093/nar/gkt780 es_ES
dc.description.references Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science, 337(6096), 816-821. doi:10.1126/science.1225829 es_ES
dc.description.references Kroj, T. (2003). Regulation of storage protein gene expression in Arabidopsis. Development, 130(24), 6065-6073. doi:10.1242/dev.00814 es_ES
dc.description.references Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., … Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947-2948. doi:10.1093/bioinformatics/btm404 es_ES
dc.description.references McVey, M., & Lee, S. E. (2008). MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends in Genetics, 24(11), 529-538. doi:10.1016/j.tig.2008.08.007 es_ES
dc.description.references Mojica, F. J. M., D�ez-Villase�or, C., Garc�a-Mart�nez, J., & Soria, E. (2005). Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements. Journal of Molecular Evolution, 60(2), 174-182. doi:10.1007/s00239-004-0046-3 es_ES
dc.description.references Morineau, C., Bellec, Y., Tellier, F., Gissot, L., Kelemen, Z., Nogué, F., & Faure, J.-D. (2017). Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid Camelina sativa. Plant Biotechnology Journal, 15(6), 729-739. doi:10.1111/pbi.12671 es_ES
dc.description.references Murray, M. G., & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8(19), 4321-4326. doi:10.1093/nar/8.19.4321 es_ES
dc.description.references Okada, A., Arndell, T., Borisjuk, N., Sharma, N., Watson‐Haigh, N. S., Tucker, E. J., … Whitford, R. (2019). CRISPR /Cas9‐mediated knockout of Ms1 enables the rapid generation of male‐sterile hexaploid wheat lines for use in hybrid seed production. Plant Biotechnology Journal, 17(10), 1905-1913. doi:10.1111/pbi.13106 es_ES
dc.description.references Qin, G., Gu, H., Zhao, Y., Ma, Z., Shi, G., Yang, Y., … Qu, L.-J. (2005). An Indole-3-Acetic Acid Carboxyl Methyltransferase Regulates Arabidopsis Leaf Development. The Plant Cell, 17(10), 2693-2704. doi:10.1105/tpc.105.034959 es_ES
dc.description.references Ravi, M., Marimuthu, M. P. A., Tan, E. H., Maheshwari, S., Henry, I. M., Marin-Rodriguez, B., … Chan, S. W. L. (2014). A haploid genetics toolbox for Arabidopsis thaliana. Nature Communications, 5(1). doi:10.1038/ncomms6334 es_ES
dc.description.references Sarrion-Perdigones, A., Vazquez-Vilar, M., Palaci, J., Castelijns, B., Forment, J., Ziarsolo, P., … Orzaez, D. (2013). GoldenBraid 2.0: A Comprehensive DNA Assembly Framework for Plant Synthetic Biology. PLANT PHYSIOLOGY, 162(3), 1618-1631. doi:10.1104/pp.113.217661 es_ES
dc.description.references Shimada, T. L., Shimada, T., & Hara-Nishimura, I. (2010). A rapid and non-destructive screenable marker, FAST, for identifying transformed seeds ofArabidopsis thaliana. The Plant Journal, 61(3), 519-528. doi:10.1111/j.1365-313x.2009.04060.x es_ES
dc.description.references Toki, S., Hara, N., Ono, K., Onodera, H., Tagiri, A., Oka, S., & Tanaka, H. (2006). Early infection of scutellum tissue withAgrobacteriumallows high-speed transformation of rice. The Plant Journal, 47(6), 969-976. doi:10.1111/j.1365-313x.2006.02836.x es_ES
dc.description.references Vazquez-Vilar, M., Bernabé-Orts, J. M., Fernandez-del-Carmen, A., Ziarsolo, P., Blanca, J., Granell, A., & Orzaez, D. (2016). A modular toolbox for gRNA–Cas9 genome engineering in plants based on the GoldenBraid standard. Plant Methods, 12(1). doi:10.1186/s13007-016-0101-2 es_ES
dc.description.references Vazquez-Vilar, M., Sarrion-Perdigones, A., Ziarsolo, P., Blanca, J., Granell, A., & Orzaez, D. (2015). Software-Assisted Stacking of Gene Modules Using GoldenBraid 2.0 DNA-Assembly Framework. Plant Functional Genomics, 399-420. doi:10.1007/978-1-4939-2444-8_20 es_ES
dc.description.references Wu, R., Lucke, M., Jang, Y., Zhu, W., Symeonidi, E., Wang, C., … Weigel, D. (2018). An efficient CRISPR vector toolbox for engineering large deletions in Arabidopsis thaliana. Plant Methods, 14(1). doi:10.1186/s13007-018-0330-7 es_ES
dc.description.references Xie, K., Minkenberg, B., & Yang, Y. (2015). Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proceedings of the National Academy of Sciences, 112(11), 3570-3575. doi:10.1073/pnas.1420294112 es_ES
dc.description.references Yau, Y.-Y., & Stewart, C. N. (2013). Less is more: strategies to remove marker genes from transgenic plants. BMC Biotechnology, 13(1). doi:10.1186/1472-6750-13-36 es_ES
dc.description.references Yu, H., & Zhao, Y. (2019). Fluorescence Marker-Assisted Isolation of Cas9-Free and CRISPR-Edited Arabidopsis Plants. Plant Genome Editing with CRISPR Systems, 147-154. doi:10.1007/978-1-4939-8991-1_11 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem