- -

Identification of Transgene-Free CRISPR-Edited Plants of Rice, Tomato, and Arabidopsis by Monitoring DsRED Fluorescence in Dry Seeds

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Identification of Transgene-Free CRISPR-Edited Plants of Rice, Tomato, and Arabidopsis by Monitoring DsRED Fluorescence in Dry Seeds

Mostrar el registro completo del ítem

Aliaga Franco, N.; Zhang, C.; Presa Castro, S.; Srivastava, AK.; Granell Richart, A.; Alabadí Diego, D.; Sadanandom, A.... (2019). Identification of Transgene-Free CRISPR-Edited Plants of Rice, Tomato, and Arabidopsis by Monitoring DsRED Fluorescence in Dry Seeds. Frontiers in Plant Science. 10:1-9. https://doi.org/10.3389/fpls.2019.01150

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143883

Ficheros en el ítem

Metadatos del ítem

Título: Identification of Transgene-Free CRISPR-Edited Plants of Rice, Tomato, and Arabidopsis by Monitoring DsRED Fluorescence in Dry Seeds
Autor: Aliaga Franco, Norma Zhang, Cunjin Presa Castro, Silvia Srivastava, Anjil K. GRANELL RICHART, ANTONIO ALABADÍ DIEGO, DAVID Sadanandom, Ari BLAZQUEZ RODRIGUEZ, MIGUEL ANGEL Minguet, E.G.
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal
Fecha difusión:
Resumen:
[EN] Efficient elimination of the editing machinery remains a challenge in plant biotechnology after genome editing to minimize the probability of off-target mutations, but it is also important to deliver end users with ...[+]
Palabras clave: CRISPR/Cas9 , Genome editing , DsRED , Solanum lycopersicum , Oryza sativa , Arabidopsis thaliana
Derechos de uso: Reconocimiento (by)
Fuente:
Frontiers in Plant Science. (eissn: 1664-462X )
DOI: 10.3389/fpls.2019.01150
Editorial:
Frontiers Media SA
Versión del editor: https://doi.org/10.3389/fpls.2019.01150
Código del Proyecto:
info:eu-repo/grantAgreement/EC/FP7/310235/EU/SUMOrice: Exploiting an emerging protein modification system, SUMOylation to boost rice yield during drought and salt stress/
...[+]
info:eu-repo/grantAgreement/EC/FP7/310235/EU/SUMOrice: Exploiting an emerging protein modification system, SUMOylation to boost rice yield during drought and salt stress/
info:eu-repo/grantAgreement/MINECO//AGL2014-57200-JIN/ES/MEJORA DE LA PRODUCTIVIDAD DE LOS CULTIVOS AGRICOLAS EN CONDICIONES DE ESTRES POR ALTAS TEMPERATURAS/
info:eu-repo/grantAgreement/EC/H2020/634561/EU/Traditional tomato varieties and cultural practices: a case for agricultural diversification with impact on food security and health of European population/
info:eu-repo/grantAgreement/MINECO//BIO2016-78601-R/ES/DISEÑO DE CIRCUITOS GENICOS SINTETICOS Y ORTOGONALES PARA PLANTAS MEDIANTE EL USO DE FACTORES PROGRAMABLES DE UNION A DNA BASADOS EN LA ARQUITECTURA CRISPR-CAS9./
info:eu-repo/grantAgreement/EC/H2020/679796/EU/A holistic multi-actor approach towards the design of new tomato varieties and management practices to improve yield and quality in the face of climate change/
info:eu-repo/grantAgreement/MINECO//BFU2016-80621-P/ES/ANÁLISIS EVOLUTIVO DE UN 'HUB' FUNCIONAL EN PLANTAS/
info:eu-repo/grantAgreement/EC/H2020/760331/EU/Developing Multipurpose Nicotiana Crops for Molecular Farming using New Plant Breeding Techniques/
info:eu-repo/grantAgreement/EC/H2020/774078/EU/Building the product pipeline for commercial demonstration of Plant Molecular Factories/
[-]
Agradecimientos:
Grants AGL2014-57200-JIN (EGM), BFU2016-80621-P (MB), and BIO2016-78601-R (AG) from the current Spanish Ministry of Science, Innovation and Universities. Grants TRADITOM (634561), TomGEM (679796), Newcotiana (760331-2) and ...[+]
Tipo: Artículo

References

Abbas, M., Hernández-García, J., Pollmann, S., Samodelov, S. L., Kolb, M., Friml, J., … Alabadí, D. (2018). Auxin methylation is required for differential growth inArabidopsis. Proceedings of the National Academy of Sciences, 115(26), 6864-6869. doi:10.1073/pnas.1806565115

Bechtold, N., & Pelletier, G. (1998). In Planta AgrobacteriumMediated Transformation of Adult Arabidopsis thaliana Plants by Vacuum Infiltration. Arabidopsis Protocols, 259-266. doi:10.1385/0-89603-391-0:259

Bernabé‐Orts, J. M., Casas‐Rodrigo, I., Minguet, E. G., Landolfi, V., Garcia‐Carpintero, V., Gianoglio, S., … Orzaez, D. (2019). Assessment of Cas12a‐mediated gene editing efficiency in plants. Plant Biotechnology Journal, 17(10), 1971-1984. doi:10.1111/pbi.13113 [+]
Abbas, M., Hernández-García, J., Pollmann, S., Samodelov, S. L., Kolb, M., Friml, J., … Alabadí, D. (2018). Auxin methylation is required for differential growth inArabidopsis. Proceedings of the National Academy of Sciences, 115(26), 6864-6869. doi:10.1073/pnas.1806565115

Bechtold, N., & Pelletier, G. (1998). In Planta AgrobacteriumMediated Transformation of Adult Arabidopsis thaliana Plants by Vacuum Infiltration. Arabidopsis Protocols, 259-266. doi:10.1385/0-89603-391-0:259

Bernabé‐Orts, J. M., Casas‐Rodrigo, I., Minguet, E. G., Landolfi, V., Garcia‐Carpintero, V., Gianoglio, S., … Orzaez, D. (2019). Assessment of Cas12a‐mediated gene editing efficiency in plants. Plant Biotechnology Journal, 17(10), 1971-1984. doi:10.1111/pbi.13113

Bolotin, A., Quinquis, B., Sorokin, A., & Ehrlich, S. D. (2005). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 151(8), 2551-2561. doi:10.1099/mic.0.28048-0

Brinkman, E. K., Chen, T., Amendola, M., & van Steensel, B. (2014). Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Research, 42(22), e168-e168. doi:10.1093/nar/gku936

Busov, V. B., Brunner, A. M., Meilan, R., Filichkin, S., Ganio, L., Gandhi, S., & Strauss, S. H. (2005). Genetic transformation: a powerful tool for dissection of adaptive traits in trees. New Phytologist, 167(1), 9-18. doi:10.1111/j.1469-8137.2005.01412.x

Campenhout, C. V., Cabochette, P., Veillard, A.-C., Laczik, M., Zelisko-Schmidt, A., Sabatel, C., … Kruys, V. (2019). Guidelines for optimized gene knockout using CRISPR/Cas9. BioTechniques, 66(6), 295-302. doi:10.2144/btn-2018-0187

Durr, J., Papareddy, R., Nakajima, K., & Gutierrez-Marcos, J. (2018). Highly efficient heritable targeted deletions of gene clusters and non-coding regulatory regions in Arabidopsis using CRISPR/Cas9. Scientific Reports, 8(1). doi:10.1038/s41598-018-22667-1

Edwards, K., Johnstone, C., & Thompson, C. (1991). A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Research, 19(6), 1349-1349. doi:10.1093/nar/19.6.1349

Ellul, P., Garcia-Sogo, B., Pineda, B., Ríos, G., Roig, L., & Moreno, V. (2003). The ploidy level of transgenic plants in Agrobacterium-mediated transformation of tomato cotyledons (Lycopersicon esculentum L.Mill.) is genotype and procedure dependent. Theoretical and Applied Genetics, 106(2), 231-238. doi:10.1007/s00122-002-0928-y

Feng, Z., Zhang, B., Ding, W., Liu, X., Yang, D.-L., Wei, P., … Zhu, J.-K. (2013). Efficient genome editing in plants using a CRISPR/Cas system. Cell Research, 23(10), 1229-1232. doi:10.1038/cr.2013.114

Fernandez-Pozo, N., Menda, N., Edwards, J. D., Saha, S., Tecle, I. Y., Strickler, S. R., … Mueller, L. A. (2014). The Sol Genomics Network (SGN)—from genotype to phenotype to breeding. Nucleic Acids Research, 43(D1), D1036-D1041. doi:10.1093/nar/gku1195

Gao, X., Chen, J., Dai, X., Zhang, D., & Zhao, Y. (2016). An Effective Strategy for Reliably Isolating Heritable and Cas9-Free Arabidopsis Mutants Generated by CRISPR/Cas9-Mediated Genome Editing. Plant Physiology, 171(3), 1794-1800. doi:10.1104/pp.16.00663

Hiei, Y., & Komari, T. (2008). Agrobacterium-mediated transformation of rice using immature embryos or calli induced from mature seed. Nature Protocols, 3(5), 824-834. doi:10.1038/nprot.2008.46

Jiang, W., Zhou, H., Bi, H., Fromm, M., Yang, B., & Weeks, D. P. (2013). Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Research, 41(20), e188-e188. doi:10.1093/nar/gkt780

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science, 337(6096), 816-821. doi:10.1126/science.1225829

Kroj, T. (2003). Regulation of storage protein gene expression in Arabidopsis. Development, 130(24), 6065-6073. doi:10.1242/dev.00814

Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., … Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947-2948. doi:10.1093/bioinformatics/btm404

McVey, M., & Lee, S. E. (2008). MMEJ repair of double-strand breaks (director’s cut): deleted sequences and alternative endings. Trends in Genetics, 24(11), 529-538. doi:10.1016/j.tig.2008.08.007

Mojica, F. J. M., D�ez-Villase�or, C., Garc�a-Mart�nez, J., & Soria, E. (2005). Intervening Sequences of Regularly Spaced Prokaryotic Repeats Derive from Foreign Genetic Elements. Journal of Molecular Evolution, 60(2), 174-182. doi:10.1007/s00239-004-0046-3

Morineau, C., Bellec, Y., Tellier, F., Gissot, L., Kelemen, Z., Nogué, F., & Faure, J.-D. (2017). Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid Camelina sativa. Plant Biotechnology Journal, 15(6), 729-739. doi:10.1111/pbi.12671

Murray, M. G., & Thompson, W. F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8(19), 4321-4326. doi:10.1093/nar/8.19.4321

Okada, A., Arndell, T., Borisjuk, N., Sharma, N., Watson‐Haigh, N. S., Tucker, E. J., … Whitford, R. (2019). CRISPR /Cas9‐mediated knockout of Ms1 enables the rapid generation of male‐sterile hexaploid wheat lines for use in hybrid seed production. Plant Biotechnology Journal, 17(10), 1905-1913. doi:10.1111/pbi.13106

Qin, G., Gu, H., Zhao, Y., Ma, Z., Shi, G., Yang, Y., … Qu, L.-J. (2005). An Indole-3-Acetic Acid Carboxyl Methyltransferase Regulates Arabidopsis Leaf Development. The Plant Cell, 17(10), 2693-2704. doi:10.1105/tpc.105.034959

Ravi, M., Marimuthu, M. P. A., Tan, E. H., Maheshwari, S., Henry, I. M., Marin-Rodriguez, B., … Chan, S. W. L. (2014). A haploid genetics toolbox for Arabidopsis thaliana. Nature Communications, 5(1). doi:10.1038/ncomms6334

Sarrion-Perdigones, A., Vazquez-Vilar, M., Palaci, J., Castelijns, B., Forment, J., Ziarsolo, P., … Orzaez, D. (2013). GoldenBraid 2.0: A Comprehensive DNA Assembly Framework for Plant Synthetic Biology. PLANT PHYSIOLOGY, 162(3), 1618-1631. doi:10.1104/pp.113.217661

Shimada, T. L., Shimada, T., & Hara-Nishimura, I. (2010). A rapid and non-destructive screenable marker, FAST, for identifying transformed seeds ofArabidopsis thaliana. The Plant Journal, 61(3), 519-528. doi:10.1111/j.1365-313x.2009.04060.x

Toki, S., Hara, N., Ono, K., Onodera, H., Tagiri, A., Oka, S., & Tanaka, H. (2006). Early infection of scutellum tissue withAgrobacteriumallows high-speed transformation of rice. The Plant Journal, 47(6), 969-976. doi:10.1111/j.1365-313x.2006.02836.x

Vazquez-Vilar, M., Bernabé-Orts, J. M., Fernandez-del-Carmen, A., Ziarsolo, P., Blanca, J., Granell, A., & Orzaez, D. (2016). A modular toolbox for gRNA–Cas9 genome engineering in plants based on the GoldenBraid standard. Plant Methods, 12(1). doi:10.1186/s13007-016-0101-2

Vazquez-Vilar, M., Sarrion-Perdigones, A., Ziarsolo, P., Blanca, J., Granell, A., & Orzaez, D. (2015). Software-Assisted Stacking of Gene Modules Using GoldenBraid 2.0 DNA-Assembly Framework. Plant Functional Genomics, 399-420. doi:10.1007/978-1-4939-2444-8_20

Wu, R., Lucke, M., Jang, Y., Zhu, W., Symeonidi, E., Wang, C., … Weigel, D. (2018). An efficient CRISPR vector toolbox for engineering large deletions in Arabidopsis thaliana. Plant Methods, 14(1). doi:10.1186/s13007-018-0330-7

Xie, K., Minkenberg, B., & Yang, Y. (2015). Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proceedings of the National Academy of Sciences, 112(11), 3570-3575. doi:10.1073/pnas.1420294112

Yau, Y.-Y., & Stewart, C. N. (2013). Less is more: strategies to remove marker genes from transgenic plants. BMC Biotechnology, 13(1). doi:10.1186/1472-6750-13-36

Yu, H., & Zhao, Y. (2019). Fluorescence Marker-Assisted Isolation of Cas9-Free and CRISPR-Edited Arabidopsis Plants. Plant Genome Editing with CRISPR Systems, 147-154. doi:10.1007/978-1-4939-8991-1_11

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem