- -

MBW complexes impinge on anthocyanidin reductase gene regulation for proanthocyanidin biosynthesis in persimmon fruit

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

MBW complexes impinge on anthocyanidin reductase gene regulation for proanthocyanidin biosynthesis in persimmon fruit

Show full item record

Gil Muñoz, F.; Sanchez Navarro, JA.; Besada Ferreiro, CM.; Salvador Perez, AA.; Badenes Catala, M.; Naval Merino, MDM.; Rios Garcia, G. (2020). MBW complexes impinge on anthocyanidin reductase gene regulation for proanthocyanidin biosynthesis in persimmon fruit. Scientific Reports. 10:1-11. https://doi.org/10.1038/s41598-020-60635-w

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143887

Files in this item

Item Metadata

Title: MBW complexes impinge on anthocyanidin reductase gene regulation for proanthocyanidin biosynthesis in persimmon fruit
Author: Gil Muñoz, Francisco SANCHEZ NAVARRO, JESUS ANGEL Besada Ferreiro, Cristina María SALVADOR PEREZ, AMPARO ALEJANDRA BADENES CATALA, MARISA Naval Merino, María del Mar RIOS GARCIA, GABINO
UPV Unit: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería Agronómica y del Medio Natural - Escola Tècnica Superior d'Enginyeria Agronòmica i del Medi Natural
Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Issued date:
Abstract:
[EN] MBW protein complexes containing MYB, bHLH and WD40 repeat factors are known transcriptional regulators of secondary metabolites production such as proanthocyanidins and anthocyanins, and developmental processes such ...[+]
Copyrigths: Reconocimiento (by)
Source:
Scientific Reports. (issn: 2045-2322 )
DOI: 10.1038/s41598-020-60635-w
Publisher:
Nature Publishing Group
Publisher version: https://doi.org/10.1038/s41598-020-60635-w
Thanks:
This work was funded by the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)-FEDER (grant no. RF2013-00043-C02-02 and RTA2017-00011-C03-01). FG-M was funded by a fellowship co-financed by the ...[+]
Type: Artículo

References

Dixon, R. A., Xie, D.-Y. & Sharma, S. B. Proanthocyanidins–a final frontier in flavonoid research? New Phytol. 165, 9–28 (2005).

Yonemori, K. & Matsushima, J. Property of development of the tannin cells in non-astringent type fruits of Japanese persimmon (Diospyros kaki) and its relationship to natural deastringency. J. Jpn. Soc. Hortic. Sci. 54, 201–208 (1985).

Salvador, A. et al. Physiological and structural changes during ripening and deastringency treatment of persimmon fruit cv. ‘Rojo Brillante’. Postharvest Biol. Tec. 46, 181–188 (2007). [+]
Dixon, R. A., Xie, D.-Y. & Sharma, S. B. Proanthocyanidins–a final frontier in flavonoid research? New Phytol. 165, 9–28 (2005).

Yonemori, K. & Matsushima, J. Property of development of the tannin cells in non-astringent type fruits of Japanese persimmon (Diospyros kaki) and its relationship to natural deastringency. J. Jpn. Soc. Hortic. Sci. 54, 201–208 (1985).

Salvador, A. et al. Physiological and structural changes during ripening and deastringency treatment of persimmon fruit cv. ‘Rojo Brillante’. Postharvest Biol. Tec. 46, 181–188 (2007).

Bernays, E. A., Driver, G. C. & Bilgener, M. Herbivores and plant tannins. In Advances in Ecological Research (eds. Begon, M., Fitter, A. H., Ford, E. D. & MacFadyen, A.) 19, 263–302 (Academic Press, 1989).

Tessmer, M. A. et al. Microstructural changes while persimmon fruits mature and ripen. Comparison between astringent and non-astringent cultivars. Postharvest Biol. Tec. 120, 52–60 (2016).

Nishiyama, S. et al. Characterization of a gene regulatory network underlying astringency loss in persimmon fruit. Planta 247, 733–743 (2018).

Sugiura, A., Yonemori, K., Harada, H. & Tomama, T. Changes of ethanol and acetaldehyde contents in Japanese persimmon fruits and their relation to natural deastringency. Studies from Inst. Hort. Kyoto Univ. 9, 41–47 (1979).

Sugiura, A. & Tomana, T. Relationships of ethanol production by seeds of different types of Japanese persimmons and their tannin content. HortSci. 18, 319–321 (1983).

Ben-Arie, R. & Sonego, L. Temperature affects astringency removal and recurrence in persimmon. J. Food Sci. 58, 1397–1400 (1993).

Matsuo, T. & Itoo, S. A model experiment for de-astringency of persimmon fruit with high carbon dioxide treatment: in vitro gelation of kaki-tannin by reacting with acetaldehyde. Agr. Biol. Chem. Tokyo 46, 683–689 (1982).

Pesis, E. & Ben-Arie, R. Involvement of acetaldehyde and ethanol accumulation during induced deastringency of persimmon fruits. J. Food Sci. 49, 896–899 (1984).

Kanzaki, S., Yonemori, K., Sugiura, A., Sato, A. & Yamada, M. Identification of molecular markers linked to the trait of natural astringency loss of Japanese persimmon (Diospyros kaki) fruit. J. Am. Soc. Hortic. Sci. 126, 51–55 (2001).

Yamada, M. & Sato, A. Segregation for fruit astringency type in progenies derived from crosses of ‘Nishimurawase’×pollination constant non-astringent genotypes in oriental persimmon (Diospyros kaki Thunb.). Sci. Hortic.-Amsterdam 92, 107–111 (2002).

Besada, C. et al. Chloride stress triggers maturation and negatively affects the postharvest quality of persimmon fruit. Involvement of calyx ethylene production. Plant Physiol. Biochem. 100, 105–112 (2016).

Lepiniec, L. et al. Genetics and biochemistry of seed flavonoids. Annu. Rev. Plant Biol. 57, 405–430 (2006).

Tanner, G. J. et al. Proanthocyanidin biosynthesis in plants. Purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA. J. Biol. Chem. 278, 31647–31656 (2003).

Xie, D.-Y., Sharma, S. B., Paiva, N. L., Ferreira, D. & Dixon, R. A. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299, 396–399 (2003).

Ikegami, A., Eguchi, S., Kitajima, A., Inoue, K. & Yonemori, K. Identification of genes involved in proanthocyanidin biosynthesis of persimmon (Diospyros kaki) fruit. Plant Science 172, 1037–1047 (2007).

Akagi, T. et al. Expression balances of structural genes in shikimate and flavonoid biosynthesis cause a difference in proanthocyanidin accumulation in persimmon (Diospyros kaki Thunb.) fruit. Planta 230, 899–915 (2009).

Baudry, A. et al. TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J. 39, 366–380 (2004).

Xu, W. et al. Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB-bHLH-WDR complexes and their targets in Arabidopsis seed. New Phytol. 202, 132–144 (2014).

Xu, W., Dubos, C. & Lepiniec, L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci. 20, 176–185 (2015).

Hichri, I. et al. The basic helix-loop-helix transcription factor MYC1 is involved in the regulation of the flavonoid biosynthesis pathway in grapevine. Mol. Plant 3, 509–523 (2010).

Schaart, J. G. et al. Identification and characterization of MYB-bHLH-WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (Fragaria × ananassa) fruits. New Phytol. 197, 454–467 (2013).

Gesell, A., Yoshida, K., Tran, L. T. & Constabel, C. P. Characterization of an apple TT2-type R2R3 MYB transcription factor functionally similar to the poplar proanthocyanidin regulator PtMYB134. Planta 240, 497–511 (2014).

Naval, M. et al. A WD40-repeat protein from persimmon interacts with the regulators of proanthocyanidin biosynthesis DkMYB2 and DkMYB4. Tree Genet. Genomes 12, 13 (2016).

Akagi, T. et al. DkMyb4 is a Myb transcription factor involved in proanthocyanidin biosynthesis in persimmon fruit. Plant Physiol. 151, 2028–2045 (2009).

Akagi, T., Ikegami, A. & Yonemori, K. DkMyb2 wound-induced transcription factor of persimmon (Diospyros kaki Thunb.), contributes to proanthocyanidin regulation. Planta 232, 1045–1059 (2010).

Su, F., Hu, J., Zhang, Q. & Luo, Z. Isolation and characterization of a basic Helix–Loop–Helix transcription factor gene potentially involved in proanthocyanidin biosynthesis regulation in persimmon (Diospyros kaki Thunb.). Sci. Hortic.-Amsterdam 136, 115–121 (2012).

Hribal, J., Zavrtanik, M., Simćić, M. & Vidrih, R. Changes during storing and astringency removal of persimmon fruit Diospyros kaki L. Acta Aliment. Hung. 29, 123–136 (2000).

Nesi, N., Jond, C., Debeaujon, I., Caboche, M. & Lepiniec, L. The Arabidopsis TT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed. Plant Cell 13, 2099–2114 (2001).

Zhao, M., Morohashi, K., Hatlestad, G., Grotewold, E. & Lloyd, A. The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci. Development 135, 1991–1999 (2008).

Weill, U. et al. Assessment of GFP tag position on protein localization and growth Fitness in yeast. J. Mol. Biol. 431, 636–641 (2019).

Wang, P. et al. A sucrose-induced MYB (SIMYB) transcription factor promoting proanthocyanidin accumulation in the tea plant (Camellia sinensis). J. Agric. Food Chem. 67, 1418–1428 (2019).

Baudry, A., Caboche, M. & Lepiniec, L. TT8 controls its own expression in a feedback regulation involving TTG1 and homologous MYB and bHLH factors, allowing a strong and cell-specific accumulation of flavonoids in Arabidopsis thaliana. Plant J. 46, 768–779 (2006).

Albert, N. W. et al. A conserved network of transcriptional activators and repressors regulates anthocyanin pigmentation in eudicots. Plant Cell 26, 962–980 (2014).

Bellini, E. Cultural practices for persimmon production. In Options Méditerranéennes. Série A: Séminaires Méditerranéens (CIHEAM) (eds. Bellini, E. & Giordani, E.) 51. 39–52 (CIHEAM-IAMZ, 2002).

Taira, S. Astringency in Persimmon. In Fruit Analysis (eds. Linskens, H. F. & Jackson, J. F.) 97–110 (Springer Berlin Heidelberg, 1995).

Arnal, L. & Rio, M. A. D. Quality of persimmon fruit cv. Rojo brillante during storage at different temperatures. Span. J. Agric. Res. 2, 243–247 (2004).

Akagi, T., Henry, I. M., Tao, R. & Comai, L. A Y-chromosome–encoded small RNA acts as a sex determinant in persimmons. Science 346, 646–650 (2014).

Doyle, J. J. & Doyle, J. L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19, 11–15 (1987).

Herranz, M. C., Sanchez-Navarro, J. A., Aparicio, F. & Pallás, V. Simultaneous detection of six stone fruit viruses by non-isotopic molecular hybridization using a unique riboprobe or ‘polyprobe’. J. Virol. Methods 124, 49–55 (2005).

Leastro, M. O., Pallás, V., Resende, R. O. & Sánchez-Navarro, J. A. The movement proteins (NSm) of distinct tospoviruses peripherally associate with cellular membranes and interact with homologous and heterologous NSm and nucleocapsid proteins. Virology 478, 39–49 (2015).

Knoester, M. et al. Ethylene-insensitive tobacco lacks nonhost resistance against soil-borne fungi. Proc. Natl. Acad. Sci. USA 95, 1933–1937 (1998).

Hellens, R. P., Edwards, E. A., Leyland, N. R., Bean, S. & Mullineaux, P. M. pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol. Biol. 42, 819–832 (2000).

Hamilton, C. M., Frary, A., Lewis, C. & Tanksley, S. D. Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc. Natl. Acad. Sci. USA 93, 9975–9979 (1996).

Genovés, A., Pallás, V. & Navarro, J. A. Contribution of topology determinants of a viral movement protein to its membrane association, intracellular traffic, and viral cell-to-cell movement. J. Virol. 85, 7797–7809 (2011).

Aparicio, F., Sánchez-Navarro, J. A. & Pallás, V. In vitro and in vivo mapping of the Prunus necrotic ringspot virus coat protein C-terminal dimerization domain by bimolecular fluorescence complementation. J. Gen. Virol. 87, 1745–1750 (2006).

Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685 (1970).

Gambino, G., Perrone, I. & Gribaudo, I. A Rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochem. Anal. 19, 520–525 (2008).

[-]

This item appears in the following Collection(s)

Show full item record