Mostrar el registro sencillo del ítem
dc.contributor.author | García Moreno, Emilio | es_ES |
dc.contributor.author | Quiles Cucarella, Eduardo | es_ES |
dc.contributor.author | Correcher Salvador, Antonio | es_ES |
dc.contributor.author | Morant Anglada, Francisco José | es_ES |
dc.date.accessioned | 2020-05-21T03:02:46Z | |
dc.date.available | 2020-05-21T03:02:46Z | |
dc.date.issued | 2019-10-16 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/143893 | |
dc.description.abstract | [EN] In this paper, an application for the management, supervision and failure forecast of a ship¿s energy storage system is developed through a National Marine Electronics Association (NMEA) 2000 smart sensor network. Here, the NMEA 2000 network sensor devices for the measurement and supervision of the parameters inherent to energy storage and energy supply are reviewed. The importance of energy storage systems in ships, the causes and models of battery aging, types of failures, and predictive diagnosis techniques for valve-regulated lead-acid (VRLA) batteries used for assisted and safe navigation are discussed. In ships, battery banks are installed in chambers that normally do not have temperature regulation and therefore are significantly conditioned by the outside temperature. A specific method based on the analysis of the time-series data of random and seasonal factors is proposed for the comparative trend analyses of both the battery internal temperature and the battery installation chamber temperature. The objective is to apply predictive fault diagnosis to detect any undesirable increase in battery temperature using prior indicators of heat dissipation process failure¿to avoid the development of the most frequent and dangerous failure modes of VRLA batteries such as dry out and thermal runaway. It is concluded that these failure modes can be conveniently diagnosed by easily recognized patterns, obtained by performing comparative trend analyses to the variables measured onboard by NMEA sensors. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Marine sensor system | es_ES |
dc.subject | NMEA 2000 network | es_ES |
dc.subject | Ship networking technology | es_ES |
dc.subject | Batteries | es_ES |
dc.subject | Predictive fault diagnosis | es_ES |
dc.subject.classification | INGENIERIA DE SISTEMAS Y AUTOMATICA | es_ES |
dc.title | Marine NMEA 2000 Smart Sensors for Ship Batteries Supervision and Predictive Fault Diagnosis | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/s19204480 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica | es_ES |
dc.description.bibliographicCitation | García Moreno, E.; Quiles Cucarella, E.; Correcher Salvador, A.; Morant Anglada, FJ. (2019). Marine NMEA 2000 Smart Sensors for Ship Batteries Supervision and Predictive Fault Diagnosis. Sensors. 19(20):1-24. https://doi.org/10.3390/s19204480 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/s19204480 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 24 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 19 | es_ES |
dc.description.issue | 20 | es_ES |
dc.identifier.eissn | 1424-8220 | es_ES |
dc.identifier.pmid | 31623093 | es_ES |
dc.identifier.pmcid | PMC6832581 | es_ES |
dc.relation.pasarela | S\395504 | es_ES |
dc.description.references | Dudojc, B., & Mindykowski, J. (2019). New Approach to Analysis of Selected Measurement and Monitoring Systems Solutions in Ship Technology. Sensors, 19(8), 1775. doi:10.3390/s19081775 | es_ES |
dc.description.references | Khan, M., Swierczynski, M., & Kær, S. (2017). Towards an Ultimate Battery Thermal Management System: A Review. Batteries, 3(4), 9. doi:10.3390/batteries3010009 | es_ES |
dc.description.references | IEEE P1451.6—Proposed Standard for a High-Speed CANopen- Based Transducer Network Interface for Intrinsically Safe and Non-Intrinsically Safe Applications http://grouper.ieee.org/groups/1451/6/ | es_ES |
dc.description.references | Song, E., & Lee, K. (2008). Understanding IEEE 1451-Networked smart transducer interface standard - What is a smart transducer? IEEE Instrumentation & Measurement Magazine, 11(2), 11-17. doi:10.1109/mim.2008.4483728 | es_ES |
dc.description.references | Signal K Signalk.org/overview.html | es_ES |
dc.description.references | Lead Acid Battery Working–Lifetime Study http://www.power-thru.com/documents/The%20Truth%20About%20Batteries%20-%20POWERTHRU%20White%20Paper.pdf | es_ES |
dc.description.references | Lee, C.-Y., Peng, H.-C., Lee, S.-J., Hung, I.-M., Hsieh, C.-T., Chiou, C.-S., … Huang, Y.-P. (2015). A Flexible Three-in-One Microsensor for Real-Time Monitoring of Internal Temperature, Voltage and Current of Lithium Batteries. Sensors, 15(5), 11485-11498. doi:10.3390/s150511485 | es_ES |
dc.description.references | Hong, J., Wang, Z., & Liu, P. (2017). Big-Data-Based Thermal Runaway Prognosis of Battery Systems for Electric Vehicles. Energies, 10(7), 919. doi:10.3390/en10070919 | es_ES |
dc.description.references | Jouhara, H., Khordehgah, N., Serey, N., Almahmoud, S., Lester, S. P., Machen, D., & Wrobel, L. (2019). Applications and thermal management of rechargeable batteries for industrial applications. Energy, 170, 849-861. doi:10.1016/j.energy.2018.12.218 | es_ES |
dc.description.references | Salameh, Z. M., Casacca, M. A., & Lynch, W. A. (1992). A mathematical model for lead-acid batteries. IEEE Transactions on Energy Conversion, 7(1), 93-98. doi:10.1109/60.124547 | es_ES |
dc.description.references | Copetti, J. B., Lorenzo, E., & Chenlo, F. (1993). A general battery model for PV system simulation. Progress in Photovoltaics: Research and Applications, 1(4), 283-292. doi:10.1002/pip.4670010405 | es_ES |
dc.description.references | Ceraolo, M. (2000). New dynamical models of lead-acid batteries. IEEE Transactions on Power Systems, 15(4), 1184-1190. doi:10.1109/59.898088 | es_ES |
dc.description.references | Chen, M., & Rincon-Mora, G. A. (2006). Accurate Electrical Battery Model Capable of Predicting Runtime and I–V Performance. IEEE Transactions on Energy Conversion, 21(2), 504-511. doi:10.1109/tec.2006.874229 | es_ES |
dc.description.references | Gomadam, P. M., Weidner, J. W., Dougal, R. A., & White, R. E. (2002). Mathematical modeling of lithium-ion and nickel battery systems. Journal of Power Sources, 110(2), 267-284. doi:10.1016/s0378-7753(02)00190-8 | es_ES |
dc.description.references | Zhang, J., & Lee, J. (2011). A review on prognostics and health monitoring of Li-ion battery. Journal of Power Sources, 196(15), 6007-6014. doi:10.1016/j.jpowsour.2011.03.101 | es_ES |
dc.description.references | Cho, S., Jeong, H., Han, C., Jin, S., Lim, J. H., & Oh, J. (2012). State-of-charge estimation for lithium-ion batteries under various operating conditions using an equivalent circuit model. Computers & Chemical Engineering, 41, 1-9. doi:10.1016/j.compchemeng.2012.02.003 | es_ES |
dc.description.references | Xu, J., Wang, J., Li, S., & Cao, B. (2016). A Method to Simultaneously Detect the Current Sensor Fault and Estimate the State of Energy for Batteries in Electric Vehicles. Sensors, 16(8), 1328. doi:10.3390/s16081328 | es_ES |
dc.description.references | Osaka, T., Momma, T., Mukoyama, D., & Nara, H. (2012). Proposal of novel equivalent circuit for electrochemical impedance analysis of commercially available lithium ion battery. Journal of Power Sources, 205, 483-486. doi:10.1016/j.jpowsour.2012.01.070 | es_ES |
dc.description.references | Guenther, C., Barillas, J. K., Stumpp, S., & Danzer, M. A. (2012). A dynamic battery model for simulation of battery-to-grid applications. 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe). doi:10.1109/isgteurope.2012.6465855 | es_ES |
dc.description.references | Worwood, D., Kellner, Q., Wojtala, M., Widanage, W. D., McGlen, R., Greenwood, D., & Marco, J. (2017). A new approach to the internal thermal management of cylindrical battery cells for automotive applications. Journal of Power Sources, 346, 151-166. doi:10.1016/j.jpowsour.2017.02.023 | es_ES |
dc.description.references | Barré, A., Deguilhem, B., Grolleau, S., Gérard, M., Suard, F., & Riu, D. (2013). A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. Journal of Power Sources, 241, 680-689. doi:10.1016/j.jpowsour.2013.05.040 | es_ES |
dc.description.references | Modelisation du Vieillissement et Determination de l’Etat de Sante de Batteries Lithium-Ion pour Application Vehicule Electrique et Hybride https://tel.archives-ouvertes.fr/tel-00957678 | es_ES |
dc.description.references | Vetter, J., Novák, P., Wagner, M. R., Veit, C., Möller, K.-C., Besenhard, J. O., … Hammouche, A. (2005). Ageing mechanisms in lithium-ion batteries. Journal of Power Sources, 147(1-2), 269-281. doi:10.1016/j.jpowsour.2005.01.006 | es_ES |
dc.description.references | Laidler, K. J. (1984). The development of the Arrhenius equation. Journal of Chemical Education, 61(6), 494. doi:10.1021/ed061p494 | es_ES |
dc.description.references | Schmalstieg, J., Käbitz, S., Ecker, M., & Sauer, D. U. (2014). A holistic aging model for Li(NiMnCo)O2 based 18650 lithium-ion batteries. Journal of Power Sources, 257, 325-334. doi:10.1016/j.jpowsour.2014.02.012 | es_ES |
dc.description.references | Guena, T., & Leblanc, P. (2006). How Depth of Discharge Affects the Cycle Life of Lithium-Metal-Polymer Batteries. INTELEC 06 - Twenty-Eighth International Telecommunications Energy Conference. doi:10.1109/intlec.2006.251641 | es_ES |
dc.description.references | Sarasketa-Zabala, E., Laresgoiti, I., Alava, I., Rivas, M., Villarreal, I., & Blanco, F. (2013). Validation of the methodology for lithium-ion batteries lifetime prognosis. 2013 World Electric Vehicle Symposium and Exhibition (EVS27). doi:10.1109/evs.2013.6914730 | es_ES |
dc.description.references | Niehoff, P., Kraemer, E., & Winter, M. (2013). Parametrisation of the influence of different cycling conditions on the capacity fade and the internal resistance increase for lithium nickel manganese cobalt oxide/graphite cells. Journal of Electroanalytical Chemistry, 707, 110-116. doi:10.1016/j.jelechem.2013.08.032 | es_ES |
dc.description.references | Goebel, K., Saha, B., Saxena, A., Celaya, J., & Christophersen, J. (2008). Prognostics in Battery Health Management. IEEE Instrumentation & Measurement Magazine, 11(4), 33-40. doi:10.1109/mim.2008.4579269 | es_ES |
dc.description.references | Nuhic, A., Terzimehic, T., Soczka-Guth, T., Buchholz, M., & Dietmayer, K. (2013). Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods. Journal of Power Sources, 239, 680-688. doi:10.1016/j.jpowsour.2012.11.146 | es_ES |
dc.description.references | Zou, Y., Hu, X., Ma, H., & Li, S. E. (2015). Combined State of Charge and State of Health estimation over lithium-ion battery cell cycle lifespan for electric vehicles. Journal of Power Sources, 273, 793-803. doi:10.1016/j.jpowsour.2014.09.146 | es_ES |
dc.description.references | Dai Haifeng, Wei Xuezhe, & Sun Zechang. (2009). A new SOH prediction concept for the power lithium-ion battery used on HEVs. 2009 IEEE Vehicle Power and Propulsion Conference. doi:10.1109/vppc.2009.5289654 | es_ES |
dc.description.references | Zainuri, A., Wibawa, U., Rusli, M., Hasanah, R. N., & Harahap, R. A. (2019). VRLA battery state of health estimation based on charging time. TELKOMNIKA (Telecommunication Computing Electronics and Control), 17(3), 1577. doi:10.12928/telkomnika.v17i3.12241 | es_ES |
dc.description.references | May, G. J., Davidson, A., & Monahov, B. (2018). Lead batteries for utility energy storage: A review. Journal of Energy Storage, 15, 145-157. doi:10.1016/j.est.2017.11.008 | es_ES |
dc.description.references | Megger Batery Testing Guide. art.nr. ZP-AD01E Doc. AD0009AE 2009 https://us.megger.com/support/technical-library?searchtext=&searchmode=anyword&application2=0&type=6;&application=0&order=0 | es_ES |
dc.description.references | Catherino, H. A. (2006). Complexity in battery systems: Thermal runaway in VRLA batteries. Journal of Power Sources, 158(2), 977-986. doi:10.1016/j.jpowsour.2005.11.005 | es_ES |
dc.description.references | Culpin, B. (2004). Thermal runaway in valve-regulated lead-acid cells and the effect of separator structure. Journal of Power Sources, 133(1), 79-86. doi:10.1016/j.jpowsour.2003.09.078 | es_ES |
dc.description.references | Uddin, K., Moore, A. D., Barai, A., & Marco, J. (2016). The effects of high frequency current ripple on electric vehicle battery performance. Applied Energy, 178, 142-154. doi:10.1016/j.apenergy.2016.06.033 | es_ES |
dc.description.references | Piętak, A., & Mikulski, M. (2009). On the adaptation of CAN BUS network for use in the ship electronic systems. Polish Maritime Research, 16(4), 62-69. doi:10.2478/v10012-008-0058-9 | es_ES |
dc.description.references | Maretron NBE100 Network Bus Extender (NMEA 2000 Bridge) User’s Manual. Revision 1.5 https://www.maretron.com/support/manuals/NBE100UM_1.0.html | es_ES |
dc.description.references | OneNet https://www.nmea.org/content/STANDARDS/OneNet | es_ES |
dc.description.references | Maretron Press Kit https://www.maretron.com/company/presskit.php | es_ES |
dc.description.references | DCM100 User’s Manual https://www.maretron.com/support/manuals/DCM100UM_1.5.html | es_ES |
dc.description.references | Airmar Technology Corporation www.airmar.com | es_ES |
dc.description.references | García, E., Quiles, E., Correcher, A., & Morant, F. (2018). Sensor Buoy System for Monitoring Renewable Marine Energy Resources. Sensors, 18(4), 945. doi:10.3390/s18040945 | es_ES |
dc.description.references | TMP100 Temperature Module User’s Manual https://www.maretron.com/support/manuals/TMP100UM_1.2.html | es_ES |
dc.description.references | N2KExtractor User’s Manual https://www.maretron.com/support/manuals/N2KExtractor_UM_3.1.6.html | es_ES |
dc.description.references | VDR100 Vessel Data Recorder User’s Manual https://www.maretron.com/support/manuals/VDR100UM_1.2.htm | es_ES |
dc.description.references | N2KView User’s Manual https://www.maretron.com/support/manuals/N2KView%20User%20Manual%206.0.12.html | es_ES |
dc.description.references | DSM250 User’s Manual https://www.maretron.com/support/manuals/DSM250UM_1.6.2.html | es_ES |
dc.description.references | Munoz-Condes, P., Gomez-Parra, M., Sancho, C., San Andres, M. A. G., Gonzalez-Fernandez, F. J., Carpio, J., & Guirado, R. (2013). On Condition Maintenance Based on the Impedance Measurement for Traction Batteries: Development and Industrial Implementation. IEEE Transactions on Industrial Electronics, 60(7), 2750-2759. doi:10.1109/tie.2012.2196895 | es_ES |
dc.description.references | He, W., Williard, N., Osterman, M., & Pecht, M. (2011). Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method. Journal of Power Sources, 196(23), 10314-10321. doi:10.1016/j.jpowsour.2011.08.040 | es_ES |