- -

Marine NMEA 2000 Smart Sensors for Ship Batteries Supervision and Predictive Fault Diagnosis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Marine NMEA 2000 Smart Sensors for Ship Batteries Supervision and Predictive Fault Diagnosis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García Moreno, Emilio es_ES
dc.contributor.author Quiles Cucarella, Eduardo es_ES
dc.contributor.author Correcher Salvador, Antonio es_ES
dc.contributor.author Morant Anglada, Francisco José es_ES
dc.date.accessioned 2020-05-21T03:02:46Z
dc.date.available 2020-05-21T03:02:46Z
dc.date.issued 2019-10-16 es_ES
dc.identifier.uri http://hdl.handle.net/10251/143893
dc.description.abstract [EN] In this paper, an application for the management, supervision and failure forecast of a ship¿s energy storage system is developed through a National Marine Electronics Association (NMEA) 2000 smart sensor network. Here, the NMEA 2000 network sensor devices for the measurement and supervision of the parameters inherent to energy storage and energy supply are reviewed. The importance of energy storage systems in ships, the causes and models of battery aging, types of failures, and predictive diagnosis techniques for valve-regulated lead-acid (VRLA) batteries used for assisted and safe navigation are discussed. In ships, battery banks are installed in chambers that normally do not have temperature regulation and therefore are significantly conditioned by the outside temperature. A specific method based on the analysis of the time-series data of random and seasonal factors is proposed for the comparative trend analyses of both the battery internal temperature and the battery installation chamber temperature. The objective is to apply predictive fault diagnosis to detect any undesirable increase in battery temperature using prior indicators of heat dissipation process failure¿to avoid the development of the most frequent and dangerous failure modes of VRLA batteries such as dry out and thermal runaway. It is concluded that these failure modes can be conveniently diagnosed by easily recognized patterns, obtained by performing comparative trend analyses to the variables measured onboard by NMEA sensors. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Marine sensor system es_ES
dc.subject NMEA 2000 network es_ES
dc.subject Ship networking technology es_ES
dc.subject Batteries es_ES
dc.subject Predictive fault diagnosis es_ES
dc.subject.classification INGENIERIA DE SISTEMAS Y AUTOMATICA es_ES
dc.title Marine NMEA 2000 Smart Sensors for Ship Batteries Supervision and Predictive Fault Diagnosis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s19204480 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica es_ES
dc.description.bibliographicCitation García Moreno, E.; Quiles Cucarella, E.; Correcher Salvador, A.; Morant Anglada, FJ. (2019). Marine NMEA 2000 Smart Sensors for Ship Batteries Supervision and Predictive Fault Diagnosis. Sensors. 19(20):1-24. https://doi.org/10.3390/s19204480 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s19204480 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 24 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 20 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 31623093 es_ES
dc.identifier.pmcid PMC6832581 es_ES
dc.relation.pasarela S\395504 es_ES
dc.description.references Dudojc, B., & Mindykowski, J. (2019). New Approach to Analysis of Selected Measurement and Monitoring Systems Solutions in Ship Technology. Sensors, 19(8), 1775. doi:10.3390/s19081775 es_ES
dc.description.references Khan, M., Swierczynski, M., & Kær, S. (2017). Towards an Ultimate Battery Thermal Management System: A Review. Batteries, 3(4), 9. doi:10.3390/batteries3010009 es_ES
dc.description.references IEEE P1451.6—Proposed Standard for a High-Speed CANopen- Based Transducer Network Interface for Intrinsically Safe and Non-Intrinsically Safe Applications http://grouper.ieee.org/groups/1451/6/ es_ES
dc.description.references Song, E., & Lee, K. (2008). Understanding IEEE 1451-Networked smart transducer interface standard - What is a smart transducer? IEEE Instrumentation & Measurement Magazine, 11(2), 11-17. doi:10.1109/mim.2008.4483728 es_ES
dc.description.references Signal K Signalk.org/overview.html es_ES
dc.description.references Lead Acid Battery Working–Lifetime Study http://www.power-thru.com/documents/The%20Truth%20About%20Batteries%20-%20POWERTHRU%20White%20Paper.pdf es_ES
dc.description.references Lee, C.-Y., Peng, H.-C., Lee, S.-J., Hung, I.-M., Hsieh, C.-T., Chiou, C.-S., … Huang, Y.-P. (2015). A Flexible Three-in-One Microsensor for Real-Time Monitoring of Internal Temperature, Voltage and Current of Lithium Batteries. Sensors, 15(5), 11485-11498. doi:10.3390/s150511485 es_ES
dc.description.references Hong, J., Wang, Z., & Liu, P. (2017). Big-Data-Based Thermal Runaway Prognosis of Battery Systems for Electric Vehicles. Energies, 10(7), 919. doi:10.3390/en10070919 es_ES
dc.description.references Jouhara, H., Khordehgah, N., Serey, N., Almahmoud, S., Lester, S. P., Machen, D., & Wrobel, L. (2019). Applications and thermal management of rechargeable batteries for industrial applications. Energy, 170, 849-861. doi:10.1016/j.energy.2018.12.218 es_ES
dc.description.references Salameh, Z. M., Casacca, M. A., & Lynch, W. A. (1992). A mathematical model for lead-acid batteries. IEEE Transactions on Energy Conversion, 7(1), 93-98. doi:10.1109/60.124547 es_ES
dc.description.references Copetti, J. B., Lorenzo, E., & Chenlo, F. (1993). A general battery model for PV system simulation. Progress in Photovoltaics: Research and Applications, 1(4), 283-292. doi:10.1002/pip.4670010405 es_ES
dc.description.references Ceraolo, M. (2000). New dynamical models of lead-acid batteries. IEEE Transactions on Power Systems, 15(4), 1184-1190. doi:10.1109/59.898088 es_ES
dc.description.references Chen, M., & Rincon-Mora, G. A. (2006). Accurate Electrical Battery Model Capable of Predicting Runtime and I–V Performance. IEEE Transactions on Energy Conversion, 21(2), 504-511. doi:10.1109/tec.2006.874229 es_ES
dc.description.references Gomadam, P. M., Weidner, J. W., Dougal, R. A., & White, R. E. (2002). Mathematical modeling of lithium-ion and nickel battery systems. Journal of Power Sources, 110(2), 267-284. doi:10.1016/s0378-7753(02)00190-8 es_ES
dc.description.references Zhang, J., & Lee, J. (2011). A review on prognostics and health monitoring of Li-ion battery. Journal of Power Sources, 196(15), 6007-6014. doi:10.1016/j.jpowsour.2011.03.101 es_ES
dc.description.references Cho, S., Jeong, H., Han, C., Jin, S., Lim, J. H., & Oh, J. (2012). State-of-charge estimation for lithium-ion batteries under various operating conditions using an equivalent circuit model. Computers & Chemical Engineering, 41, 1-9. doi:10.1016/j.compchemeng.2012.02.003 es_ES
dc.description.references Xu, J., Wang, J., Li, S., & Cao, B. (2016). A Method to Simultaneously Detect the Current Sensor Fault and Estimate the State of Energy for Batteries in Electric Vehicles. Sensors, 16(8), 1328. doi:10.3390/s16081328 es_ES
dc.description.references Osaka, T., Momma, T., Mukoyama, D., & Nara, H. (2012). Proposal of novel equivalent circuit for electrochemical impedance analysis of commercially available lithium ion battery. Journal of Power Sources, 205, 483-486. doi:10.1016/j.jpowsour.2012.01.070 es_ES
dc.description.references Guenther, C., Barillas, J. K., Stumpp, S., & Danzer, M. A. (2012). A dynamic battery model for simulation of battery-to-grid applications. 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe). doi:10.1109/isgteurope.2012.6465855 es_ES
dc.description.references Worwood, D., Kellner, Q., Wojtala, M., Widanage, W. D., McGlen, R., Greenwood, D., & Marco, J. (2017). A new approach to the internal thermal management of cylindrical battery cells for automotive applications. Journal of Power Sources, 346, 151-166. doi:10.1016/j.jpowsour.2017.02.023 es_ES
dc.description.references Barré, A., Deguilhem, B., Grolleau, S., Gérard, M., Suard, F., & Riu, D. (2013). A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. Journal of Power Sources, 241, 680-689. doi:10.1016/j.jpowsour.2013.05.040 es_ES
dc.description.references Modelisation du Vieillissement et Determination de l’Etat de Sante de Batteries Lithium-Ion pour Application Vehicule Electrique et Hybride https://tel.archives-ouvertes.fr/tel-00957678 es_ES
dc.description.references Vetter, J., Novák, P., Wagner, M. R., Veit, C., Möller, K.-C., Besenhard, J. O., … Hammouche, A. (2005). Ageing mechanisms in lithium-ion batteries. Journal of Power Sources, 147(1-2), 269-281. doi:10.1016/j.jpowsour.2005.01.006 es_ES
dc.description.references Laidler, K. J. (1984). The development of the Arrhenius equation. Journal of Chemical Education, 61(6), 494. doi:10.1021/ed061p494 es_ES
dc.description.references Schmalstieg, J., Käbitz, S., Ecker, M., & Sauer, D. U. (2014). A holistic aging model for Li(NiMnCo)O2 based 18650 lithium-ion batteries. Journal of Power Sources, 257, 325-334. doi:10.1016/j.jpowsour.2014.02.012 es_ES
dc.description.references Guena, T., & Leblanc, P. (2006). How Depth of Discharge Affects the Cycle Life of Lithium-Metal-Polymer Batteries. INTELEC 06 - Twenty-Eighth International Telecommunications Energy Conference. doi:10.1109/intlec.2006.251641 es_ES
dc.description.references Sarasketa-Zabala, E., Laresgoiti, I., Alava, I., Rivas, M., Villarreal, I., & Blanco, F. (2013). Validation of the methodology for lithium-ion batteries lifetime prognosis. 2013 World Electric Vehicle Symposium and Exhibition (EVS27). doi:10.1109/evs.2013.6914730 es_ES
dc.description.references Niehoff, P., Kraemer, E., & Winter, M. (2013). Parametrisation of the influence of different cycling conditions on the capacity fade and the internal resistance increase for lithium nickel manganese cobalt oxide/graphite cells. Journal of Electroanalytical Chemistry, 707, 110-116. doi:10.1016/j.jelechem.2013.08.032 es_ES
dc.description.references Goebel, K., Saha, B., Saxena, A., Celaya, J., & Christophersen, J. (2008). Prognostics in Battery Health Management. IEEE Instrumentation & Measurement Magazine, 11(4), 33-40. doi:10.1109/mim.2008.4579269 es_ES
dc.description.references Nuhic, A., Terzimehic, T., Soczka-Guth, T., Buchholz, M., & Dietmayer, K. (2013). Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods. Journal of Power Sources, 239, 680-688. doi:10.1016/j.jpowsour.2012.11.146 es_ES
dc.description.references Zou, Y., Hu, X., Ma, H., & Li, S. E. (2015). Combined State of Charge and State of Health estimation over lithium-ion battery cell cycle lifespan for electric vehicles. Journal of Power Sources, 273, 793-803. doi:10.1016/j.jpowsour.2014.09.146 es_ES
dc.description.references Dai Haifeng, Wei Xuezhe, & Sun Zechang. (2009). A new SOH prediction concept for the power lithium-ion battery used on HEVs. 2009 IEEE Vehicle Power and Propulsion Conference. doi:10.1109/vppc.2009.5289654 es_ES
dc.description.references Zainuri, A., Wibawa, U., Rusli, M., Hasanah, R. N., & Harahap, R. A. (2019). VRLA battery state of health estimation based on charging time. TELKOMNIKA (Telecommunication Computing Electronics and Control), 17(3), 1577. doi:10.12928/telkomnika.v17i3.12241 es_ES
dc.description.references May, G. J., Davidson, A., & Monahov, B. (2018). Lead batteries for utility energy storage: A review. Journal of Energy Storage, 15, 145-157. doi:10.1016/j.est.2017.11.008 es_ES
dc.description.references Megger Batery Testing Guide. art.nr. ZP-AD01E Doc. AD0009AE 2009 https://us.megger.com/support/technical-library?searchtext=&searchmode=anyword&application2=0&type=6;&application=0&order=0 es_ES
dc.description.references Catherino, H. A. (2006). Complexity in battery systems: Thermal runaway in VRLA batteries. Journal of Power Sources, 158(2), 977-986. doi:10.1016/j.jpowsour.2005.11.005 es_ES
dc.description.references Culpin, B. (2004). Thermal runaway in valve-regulated lead-acid cells and the effect of separator structure. Journal of Power Sources, 133(1), 79-86. doi:10.1016/j.jpowsour.2003.09.078 es_ES
dc.description.references Uddin, K., Moore, A. D., Barai, A., & Marco, J. (2016). The effects of high frequency current ripple on electric vehicle battery performance. Applied Energy, 178, 142-154. doi:10.1016/j.apenergy.2016.06.033 es_ES
dc.description.references Piętak, A., & Mikulski, M. (2009). On the adaptation of CAN BUS network for use in the ship electronic systems. Polish Maritime Research, 16(4), 62-69. doi:10.2478/v10012-008-0058-9 es_ES
dc.description.references Maretron NBE100 Network Bus Extender (NMEA 2000 Bridge) User’s Manual. Revision 1.5 https://www.maretron.com/support/manuals/NBE100UM_1.0.html es_ES
dc.description.references OneNet https://www.nmea.org/content/STANDARDS/OneNet es_ES
dc.description.references Maretron Press Kit https://www.maretron.com/company/presskit.php es_ES
dc.description.references DCM100 User’s Manual https://www.maretron.com/support/manuals/DCM100UM_1.5.html es_ES
dc.description.references Airmar Technology Corporation www.airmar.com es_ES
dc.description.references García, E., Quiles, E., Correcher, A., & Morant, F. (2018). Sensor Buoy System for Monitoring Renewable Marine Energy Resources. Sensors, 18(4), 945. doi:10.3390/s18040945 es_ES
dc.description.references TMP100 Temperature Module User’s Manual https://www.maretron.com/support/manuals/TMP100UM_1.2.html es_ES
dc.description.references N2KExtractor User’s Manual https://www.maretron.com/support/manuals/N2KExtractor_UM_3.1.6.html es_ES
dc.description.references VDR100 Vessel Data Recorder User’s Manual https://www.maretron.com/support/manuals/VDR100UM_1.2.htm es_ES
dc.description.references N2KView User’s Manual https://www.maretron.com/support/manuals/N2KView%20User%20Manual%206.0.12.html es_ES
dc.description.references DSM250 User’s Manual https://www.maretron.com/support/manuals/DSM250UM_1.6.2.html es_ES
dc.description.references Munoz-Condes, P., Gomez-Parra, M., Sancho, C., San Andres, M. A. G., Gonzalez-Fernandez, F. J., Carpio, J., & Guirado, R. (2013). On Condition Maintenance Based on the Impedance Measurement for Traction Batteries: Development and Industrial Implementation. IEEE Transactions on Industrial Electronics, 60(7), 2750-2759. doi:10.1109/tie.2012.2196895 es_ES
dc.description.references He, W., Williard, N., Osterman, M., & Pecht, M. (2011). Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method. Journal of Power Sources, 196(23), 10314-10321. doi:10.1016/j.jpowsour.2011.08.040 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem