- -

Marine NMEA 2000 Smart Sensors for Ship Batteries Supervision and Predictive Fault Diagnosis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Marine NMEA 2000 Smart Sensors for Ship Batteries Supervision and Predictive Fault Diagnosis

Mostrar el registro completo del ítem

García Moreno, E.; Quiles Cucarella, E.; Correcher Salvador, A.; Morant Anglada, FJ. (2019). Marine NMEA 2000 Smart Sensors for Ship Batteries Supervision and Predictive Fault Diagnosis. Sensors. 19(20):1-24. https://doi.org/10.3390/s19204480

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/143893

Ficheros en el ítem

Metadatos del ítem

Título: Marine NMEA 2000 Smart Sensors for Ship Batteries Supervision and Predictive Fault Diagnosis
Autor: García Moreno, Emilio Quiles Cucarella, Eduardo Correcher Salvador, Antonio Morant Anglada, Francisco José
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica
Fecha difusión:
Resumen:
[EN] In this paper, an application for the management, supervision and failure forecast of a ship¿s energy storage system is developed through a National Marine Electronics Association (NMEA) 2000 smart sensor network. ...[+]
Palabras clave: Marine sensor system , NMEA 2000 network , Ship networking technology , Batteries , Predictive fault diagnosis
Derechos de uso: Reconocimiento (by)
Fuente:
Sensors. (eissn: 1424-8220 )
DOI: 10.3390/s19204480
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/s19204480
Tipo: Artículo

References

Dudojc, B., & Mindykowski, J. (2019). New Approach to Analysis of Selected Measurement and Monitoring Systems Solutions in Ship Technology. Sensors, 19(8), 1775. doi:10.3390/s19081775

Khan, M., Swierczynski, M., & Kær, S. (2017). Towards an Ultimate Battery Thermal Management System: A Review. Batteries, 3(4), 9. doi:10.3390/batteries3010009

IEEE P1451.6—Proposed Standard for a High-Speed CANopen- Based Transducer Network Interface for Intrinsically Safe and Non-Intrinsically Safe Applications http://grouper.ieee.org/groups/1451/6/ [+]
Dudojc, B., & Mindykowski, J. (2019). New Approach to Analysis of Selected Measurement and Monitoring Systems Solutions in Ship Technology. Sensors, 19(8), 1775. doi:10.3390/s19081775

Khan, M., Swierczynski, M., & Kær, S. (2017). Towards an Ultimate Battery Thermal Management System: A Review. Batteries, 3(4), 9. doi:10.3390/batteries3010009

IEEE P1451.6—Proposed Standard for a High-Speed CANopen- Based Transducer Network Interface for Intrinsically Safe and Non-Intrinsically Safe Applications http://grouper.ieee.org/groups/1451/6/

Song, E., & Lee, K. (2008). Understanding IEEE 1451-Networked smart transducer interface standard - What is a smart transducer? IEEE Instrumentation & Measurement Magazine, 11(2), 11-17. doi:10.1109/mim.2008.4483728

Signal K Signalk.org/overview.html

Lead Acid Battery Working–Lifetime Study http://www.power-thru.com/documents/The%20Truth%20About%20Batteries%20-%20POWERTHRU%20White%20Paper.pdf

Lee, C.-Y., Peng, H.-C., Lee, S.-J., Hung, I.-M., Hsieh, C.-T., Chiou, C.-S., … Huang, Y.-P. (2015). A Flexible Three-in-One Microsensor for Real-Time Monitoring of Internal Temperature, Voltage and Current of Lithium Batteries. Sensors, 15(5), 11485-11498. doi:10.3390/s150511485

Hong, J., Wang, Z., & Liu, P. (2017). Big-Data-Based Thermal Runaway Prognosis of Battery Systems for Electric Vehicles. Energies, 10(7), 919. doi:10.3390/en10070919

Jouhara, H., Khordehgah, N., Serey, N., Almahmoud, S., Lester, S. P., Machen, D., & Wrobel, L. (2019). Applications and thermal management of rechargeable batteries for industrial applications. Energy, 170, 849-861. doi:10.1016/j.energy.2018.12.218

Salameh, Z. M., Casacca, M. A., & Lynch, W. A. (1992). A mathematical model for lead-acid batteries. IEEE Transactions on Energy Conversion, 7(1), 93-98. doi:10.1109/60.124547

Copetti, J. B., Lorenzo, E., & Chenlo, F. (1993). A general battery model for PV system simulation. Progress in Photovoltaics: Research and Applications, 1(4), 283-292. doi:10.1002/pip.4670010405

Ceraolo, M. (2000). New dynamical models of lead-acid batteries. IEEE Transactions on Power Systems, 15(4), 1184-1190. doi:10.1109/59.898088

Chen, M., & Rincon-Mora, G. A. (2006). Accurate Electrical Battery Model Capable of Predicting Runtime and I–V Performance. IEEE Transactions on Energy Conversion, 21(2), 504-511. doi:10.1109/tec.2006.874229

Gomadam, P. M., Weidner, J. W., Dougal, R. A., & White, R. E. (2002). Mathematical modeling of lithium-ion and nickel battery systems. Journal of Power Sources, 110(2), 267-284. doi:10.1016/s0378-7753(02)00190-8

Zhang, J., & Lee, J. (2011). A review on prognostics and health monitoring of Li-ion battery. Journal of Power Sources, 196(15), 6007-6014. doi:10.1016/j.jpowsour.2011.03.101

Cho, S., Jeong, H., Han, C., Jin, S., Lim, J. H., & Oh, J. (2012). State-of-charge estimation for lithium-ion batteries under various operating conditions using an equivalent circuit model. Computers & Chemical Engineering, 41, 1-9. doi:10.1016/j.compchemeng.2012.02.003

Xu, J., Wang, J., Li, S., & Cao, B. (2016). A Method to Simultaneously Detect the Current Sensor Fault and Estimate the State of Energy for Batteries in Electric Vehicles. Sensors, 16(8), 1328. doi:10.3390/s16081328

Osaka, T., Momma, T., Mukoyama, D., & Nara, H. (2012). Proposal of novel equivalent circuit for electrochemical impedance analysis of commercially available lithium ion battery. Journal of Power Sources, 205, 483-486. doi:10.1016/j.jpowsour.2012.01.070

Guenther, C., Barillas, J. K., Stumpp, S., & Danzer, M. A. (2012). A dynamic battery model for simulation of battery-to-grid applications. 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe). doi:10.1109/isgteurope.2012.6465855

Worwood, D., Kellner, Q., Wojtala, M., Widanage, W. D., McGlen, R., Greenwood, D., & Marco, J. (2017). A new approach to the internal thermal management of cylindrical battery cells for automotive applications. Journal of Power Sources, 346, 151-166. doi:10.1016/j.jpowsour.2017.02.023

Barré, A., Deguilhem, B., Grolleau, S., Gérard, M., Suard, F., & Riu, D. (2013). A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. Journal of Power Sources, 241, 680-689. doi:10.1016/j.jpowsour.2013.05.040

Modelisation du Vieillissement et Determination de l’Etat de Sante de Batteries Lithium-Ion pour Application Vehicule Electrique et Hybride https://tel.archives-ouvertes.fr/tel-00957678

Vetter, J., Novák, P., Wagner, M. R., Veit, C., Möller, K.-C., Besenhard, J. O., … Hammouche, A. (2005). Ageing mechanisms in lithium-ion batteries. Journal of Power Sources, 147(1-2), 269-281. doi:10.1016/j.jpowsour.2005.01.006

Laidler, K. J. (1984). The development of the Arrhenius equation. Journal of Chemical Education, 61(6), 494. doi:10.1021/ed061p494

Schmalstieg, J., Käbitz, S., Ecker, M., & Sauer, D. U. (2014). A holistic aging model for Li(NiMnCo)O2 based 18650 lithium-ion batteries. Journal of Power Sources, 257, 325-334. doi:10.1016/j.jpowsour.2014.02.012

Guena, T., & Leblanc, P. (2006). How Depth of Discharge Affects the Cycle Life of Lithium-Metal-Polymer Batteries. INTELEC 06 - Twenty-Eighth International Telecommunications Energy Conference. doi:10.1109/intlec.2006.251641

Sarasketa-Zabala, E., Laresgoiti, I., Alava, I., Rivas, M., Villarreal, I., & Blanco, F. (2013). Validation of the methodology for lithium-ion batteries lifetime prognosis. 2013 World Electric Vehicle Symposium and Exhibition (EVS27). doi:10.1109/evs.2013.6914730

Niehoff, P., Kraemer, E., & Winter, M. (2013). Parametrisation of the influence of different cycling conditions on the capacity fade and the internal resistance increase for lithium nickel manganese cobalt oxide/graphite cells. Journal of Electroanalytical Chemistry, 707, 110-116. doi:10.1016/j.jelechem.2013.08.032

Goebel, K., Saha, B., Saxena, A., Celaya, J., & Christophersen, J. (2008). Prognostics in Battery Health Management. IEEE Instrumentation & Measurement Magazine, 11(4), 33-40. doi:10.1109/mim.2008.4579269

Nuhic, A., Terzimehic, T., Soczka-Guth, T., Buchholz, M., & Dietmayer, K. (2013). Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods. Journal of Power Sources, 239, 680-688. doi:10.1016/j.jpowsour.2012.11.146

Zou, Y., Hu, X., Ma, H., & Li, S. E. (2015). Combined State of Charge and State of Health estimation over lithium-ion battery cell cycle lifespan for electric vehicles. Journal of Power Sources, 273, 793-803. doi:10.1016/j.jpowsour.2014.09.146

Dai Haifeng, Wei Xuezhe, & Sun Zechang. (2009). A new SOH prediction concept for the power lithium-ion battery used on HEVs. 2009 IEEE Vehicle Power and Propulsion Conference. doi:10.1109/vppc.2009.5289654

Zainuri, A., Wibawa, U., Rusli, M., Hasanah, R. N., & Harahap, R. A. (2019). VRLA battery state of health estimation based on charging time. TELKOMNIKA (Telecommunication Computing Electronics and Control), 17(3), 1577. doi:10.12928/telkomnika.v17i3.12241

May, G. J., Davidson, A., & Monahov, B. (2018). Lead batteries for utility energy storage: A review. Journal of Energy Storage, 15, 145-157. doi:10.1016/j.est.2017.11.008

Megger Batery Testing Guide. art.nr. ZP-AD01E Doc. AD0009AE 2009 https://us.megger.com/support/technical-library?searchtext=&searchmode=anyword&application2=0&type=6;&application=0&order=0

Catherino, H. A. (2006). Complexity in battery systems: Thermal runaway in VRLA batteries. Journal of Power Sources, 158(2), 977-986. doi:10.1016/j.jpowsour.2005.11.005

Culpin, B. (2004). Thermal runaway in valve-regulated lead-acid cells and the effect of separator structure. Journal of Power Sources, 133(1), 79-86. doi:10.1016/j.jpowsour.2003.09.078

Uddin, K., Moore, A. D., Barai, A., & Marco, J. (2016). The effects of high frequency current ripple on electric vehicle battery performance. Applied Energy, 178, 142-154. doi:10.1016/j.apenergy.2016.06.033

Piętak, A., & Mikulski, M. (2009). On the adaptation of CAN BUS network for use in the ship electronic systems. Polish Maritime Research, 16(4), 62-69. doi:10.2478/v10012-008-0058-9

Maretron NBE100 Network Bus Extender (NMEA 2000 Bridge) User’s Manual. Revision 1.5 https://www.maretron.com/support/manuals/NBE100UM_1.0.html

OneNet https://www.nmea.org/content/STANDARDS/OneNet

Maretron Press Kit https://www.maretron.com/company/presskit.php

DCM100 User’s Manual https://www.maretron.com/support/manuals/DCM100UM_1.5.html

Airmar Technology Corporation www.airmar.com

García, E., Quiles, E., Correcher, A., & Morant, F. (2018). Sensor Buoy System for Monitoring Renewable Marine Energy Resources. Sensors, 18(4), 945. doi:10.3390/s18040945

TMP100 Temperature Module User’s Manual https://www.maretron.com/support/manuals/TMP100UM_1.2.html

N2KExtractor User’s Manual https://www.maretron.com/support/manuals/N2KExtractor_UM_3.1.6.html

VDR100 Vessel Data Recorder User’s Manual https://www.maretron.com/support/manuals/VDR100UM_1.2.htm

N2KView User’s Manual https://www.maretron.com/support/manuals/N2KView%20User%20Manual%206.0.12.html

DSM250 User’s Manual https://www.maretron.com/support/manuals/DSM250UM_1.6.2.html

Munoz-Condes, P., Gomez-Parra, M., Sancho, C., San Andres, M. A. G., Gonzalez-Fernandez, F. J., Carpio, J., & Guirado, R. (2013). On Condition Maintenance Based on the Impedance Measurement for Traction Batteries: Development and Industrial Implementation. IEEE Transactions on Industrial Electronics, 60(7), 2750-2759. doi:10.1109/tie.2012.2196895

He, W., Williard, N., Osterman, M., & Pecht, M. (2011). Prognostics of lithium-ion batteries based on Dempster–Shafer theory and the Bayesian Monte Carlo method. Journal of Power Sources, 196(23), 10314-10321. doi:10.1016/j.jpowsour.2011.08.040

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem