- -

A Discretized Approach to Air Pollution Monitoring Using UAV-based Sensing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Discretized Approach to Air Pollution Monitoring Using UAV-based Sensing

Mostrar el registro completo del ítem

Alvear-Alvear, Ó.; Tavares De Araujo Cesariny Calafate, CM.; Zema, N.; Natalizio, E.; Hernández-Orallo, E.; Cano, J.; Manzoni, P. (2018). A Discretized Approach to Air Pollution Monitoring Using UAV-based Sensing. Mobile Networks and Applications. 23(6):1693-1702. https://doi.org/10.1007/s11036-018-1065-4

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144077

Ficheros en el ítem

Metadatos del ítem

Título: A Discretized Approach to Air Pollution Monitoring Using UAV-based Sensing
Autor: Alvear-Alvear, Óscar Tavares De Araujo Cesariny Calafate, Carlos Miguel Zema, Nicola Natalizio, Enrico Hernández-Orallo, Enrique Cano, Juan-Carlos Manzoni, Pietro
Entidad UPV: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Fecha difusión:
Resumen:
[EN] Recently, Unmanned Aerial Vehicles (UAVs) have become a cheap alternative to sense pollution values in a certain area due to their flexibility and ability to carry small sensing units. In a previous work, we proposed ...[+]
Palabras clave: UAV control system , Air pollution monitoring , Discretized systems
Derechos de uso: Reserva de todos los derechos
Fuente:
Mobile Networks and Applications. (issn: 1383-469X )
DOI: 10.1007/s11036-018-1065-4
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s11036-018-1065-4
Título del congreso: 3rd EAI International Conference on Smart Objects and Technologies for Social Good (GOODTECHS 2017)
Lugar del congreso: Pisa, Italy
Fecha congreso: Noviembre 29-30,2017
Código del Proyecto:
info:eu-repo/grantAgreement/ANR//ANR-11-IDEX-0004/FR/Sorbonne Universités à Paris pour l'Enseignement et la Recherche/SUPER/
info:eu-repo/grantAgreement/MINECO//TEC2014-52690-R/ES/INTEGRACION DEL SMARTPHONE Y EL VEHICULO PARA CONECTAR CONDUCTORES, SENSORES Y ENTORNO A TRAVES DE UNA ARQUITECTURA DE SERVICIOS FUNCIONALES/
Agradecimientos:
This work was partially supported by the "Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a Retos de la Sociedad, Proyecto I+D+I TEC2014-52690-R", the framework of the DIVINA Challenge Team, which is ...[+]
Tipo: Artículo Comunicación en congreso

References

Adam-poupart A, Brand A, Fournier M, Jerrett M, Smargiassi A (2014) Spatiotemporal modeling of ozone levels in Quebec (Canada): a comparison of kriging, land-use regression (LUR), and combined Bayesian Maximum entropy–LUR approaches. Environ Health Perspect 970(2013):1–19. https://doi.org/10.1289/ehp.1306566

Agency U.S.E.P. (2015) Air Quality Index Available: http://cfpub.epa.gov/airnow/index.cfm?action=aqibasics.aqi

Alvear O, Calafate CT, Hernández-Orallo E, Cano JC, Manzoni P (2015) Mobile Pollution Data Sensing Using UAVs The 13th International Conference on Advances in Mobile Computing and Multimedia [+]
Adam-poupart A, Brand A, Fournier M, Jerrett M, Smargiassi A (2014) Spatiotemporal modeling of ozone levels in Quebec (Canada): a comparison of kriging, land-use regression (LUR), and combined Bayesian Maximum entropy–LUR approaches. Environ Health Perspect 970(2013):1–19. https://doi.org/10.1289/ehp.1306566

Agency U.S.E.P. (2015) Air Quality Index Available: http://cfpub.epa.gov/airnow/index.cfm?action=aqibasics.aqi

Alvear O, Calafate CT, Hernández-Orallo E, Cano JC, Manzoni P (2015) Mobile Pollution Data Sensing Using UAVs The 13th International Conference on Advances in Mobile Computing and Multimedia

Alvear O, Zamora W, Calafate C, Cano JC, Manzoni P (2016) An architecture offering mobile pollution sensing with high spatial resolution. J Sens:2016

Alvear O, Zema NR, Natalizio E, Calafate CT (2017) Using uav-based systems to monitor air pollution in areas with poor accessibility. J Adv Transp:2017

Alvear OA, Zema NR, Natalizio E, Calafate CT (2017) A chemotactic pollution-homing uav guidance system. In: 2017 13th international Wireless communications and mobile computing conference (IWCMC). IEEE, pp 2115–2120

André M (2004) The artemis european driving cycles for measuring car pollutant emissions. Sci Total Environ 334:73–84

Basu P, Redi J, Shurbanov V (2004) Coordinated flocking of uavs for improved connectivity of mobile ground nodes. In: 2004 IEEE Military communications conference, MILCOM, vol 3. IEEE, pp 1628–1634

Biomo JDMM, Kunz T, St-Hilaire M (2014) An enhanced gauss-markov mobility model for simulations of unmanned aerial ad hoc networks. In: 2014 7th IFIP Wireless and mobile networking conference (WMNC). IEEE, pp 1–8

Bouachir O, Abrassart A, Garcia F, Larrieu N (2014) A mobility model for uav ad hoc network. In: 2014 international conference on Unmanned aircraft systems (ICUAS). IEEE, pp 383–388

Cox TH, Nagy CJ, Skoog MA, Somers IA, Warner R Civil uav capability assessment

Eisenman SB, Miluzzo E, Lane ND, Peterson RA, Ahn GS, Campbell AT (2009) Bikenet: a mobile sensing system for cyclist experience mapping. ACM Transactions on Sensor Networks (TOSN) 6(1):6

Erman AT, van Hoesel L, Havinga P, Wu J (2008) Enabling mobility in heterogeneous wireless sensor networks cooperating with uavs for mission-critical management. IEEE Wirel Commun 15(6):38–46

Fayyad U, Irani K (1993) Multi-interval discretization of continuous-valued attributes for classification learning

Hugenholtz CH, Moorman BJ, Riddell K, Whitehead K (2012) Small unmanned aircraft systems for remote sensing and earth science research. Eos, Trans Amer Geophysical Union 93(25):236–236

Illingworth S, Allen G, Percival C, Hollingsworth P, Gallagher M, Ricketts H, Hayes H, adosz H, Crawley PD, Roberts G (2014) Measurement of boundary layer ozone concentrations on-board a Skywalker unmanned aerial vehicle. Atmos Sci Lett 15(4):252–258

Kennedy J (2011) Particle swarm optimization. In: Encyclopedia of machine learning. Springer, pp 760–766

Khan A, Schaefer D, Tao L, Miller DJ, Sun K, Zondlo MA, Harrison WA, Roscoe B, Lary DJ (2012) Low power greenhouse gas sensors for unmanned aerial vehicles. Remote Sens 4(5):1355–1368

Kuiper E, Nadjm-Tehrani S (2006) Mobility models for uav group reconnaissance applications. In: 2006 International conference on wireless and mobile communications (ICWMC’06). IEEE, pp 33–33

McFrederick Q, Kathilankal J, Fuentes J (2008) Air pollution modifies floral scent trails. Atmos Environ 42(10):2336–2348

MQ131 Ozone Sensor (2017) Datasheet: http://www.sensorsportal.com/downloads/mq131.pdf

Orfanus D, de Freitas EP (2014) Comparison of uav-based reconnaissance systems performance using realistic mobility models. In: 2014 6Th international congress on ultra modern telecommunications and control systems and workshops (ICUMT). IEEE, pp 248–253

Pajares G (2015) Overview and current status of remote sensing applications based on unmanned aerial vehicles (uavs). Photogram Eng Remote Sens 81(4):281–329

Pujadas M, Plaza J, Teres Jx, Artıñano B, Millan M (2000) Passive remote sensing of nitrogen dioxide as a tool for tracking air pollution in urban areas: the madrid urban plume, a case of study. Atmos Environ 34(19):3041–3056

R Core Team: R (2016) A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

Seaton A, Godden D, MacNee W, Donaldson K (1995) Particulate air pollution and acute health effects. The lancet 345(8943):176–178

Stein ML (1999) Statistical interpolation of spatial data: some theory for kriging. Springer, New York

Teh SK, Mejias L, Corke P, Hu W (2008) Experiments in integrating autonomous uninhabited aerial vehicles(uavs) and wireless sensor networks. In: 2008 Australasian Conference on Robotics and Automation (ACRA 08). The Australian Robotics and Automation Association Inc., Canberra. https://eprints.qut.edu.au/15536/

Wan Y, Namuduri K, Zhou Y, Fu S (2013) A smooth-turn mobility model for airborne networks. IEEE Trans Veh Technol 62(7):3359–3370

Wang W, Guan X, Wang B, Wang Y (2010) A novel mobility model based on semi-random circular movement in mobile ad hoc networks. Inf Sci 180(3):399–413

Zhou B, Xu K, Gerla M (2004) Group and swarm mobility models for ad hoc network scenarios using virtual tracks. In: 2004 IEEE Military communications conference, MILCOM 2004, vol 1. IEEE, pp 289–294

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem