- -

Auxin methylation is required for differential growth in Arabidopsis

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Auxin methylation is required for differential growth in Arabidopsis

Show full item record

Abbas, M.; Hernández-García, J.; Pollmann, S.; Samodelov, S.; Kolb, M.; Friml, J.; Hammes, U.... (2018). Auxin methylation is required for differential growth in Arabidopsis. Proceedings of the National Academy of Sciences. 115(26):6864-6869. https://doi.org/10.1073/pnas.1806565115

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144088

Files in this item

Item Metadata

Title: Auxin methylation is required for differential growth in Arabidopsis
Author: Abbas, Mohamad Hernández-García, Jorge Pollmann, Stephan Samodelov, S.L. Kolb, M. Friml, J. Hammes, U. Zurbriggen, M.D. Blazquez Rodriguez, Miguel Angel Alabadí Diego, David
UPV Unit: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Issued date:
Abstract:
[EN] Asymmetric auxin distribution is instrumental for the differential growth that causes organ bending on tropic stimuli and curvatures during plant development. Local differences in auxin concentrations are achieved ...[+]
Subjects: Hormone regulation , Auxin metabolism , Homeostasis , Gravitropism
Copyrigths: Reserva de todos los derechos
Source:
Proceedings of the National Academy of Sciences. (issn: 0027-8424 )
DOI: 10.1073/pnas.1806565115
Publisher:
Proceedings of the National Academy of Sciences
Publisher version: https://doi.org/10.1073/pnas.1806565115
Project ID:
info:eu-repo/grantAgreement/EC/H2020/644435/EU/Evaluation of Plant Signaling Networks in Natural Environments/
...[+]
info:eu-repo/grantAgreement/EC/H2020/644435/EU/Evaluation of Plant Signaling Networks in Natural Environments/
info:eu-repo/grantAgreement/MINECO//BFU2014-55575-R/ES/DISECCION AMPLIO DE LA MADURACION DE SEMILLAS CON ENFOQUE EN LAS BASES MOLECULARES DEL CRECIMIENTO CELULAR DE EXPANSION RAPIDO Y DE LA PRODUCCION DE NUTRIENTES ALMACENADOS/
info:eu-repo/grantAgreement/DFG//EXC-1028-CEPLAS/
info:eu-repo/grantAgreement/EC/FP7/282300/EU/POLARITY AND SUBCELLULAR DYNAMICS IN PLANTS/PSDP/
info:eu-repo/grantAgreement/DFG//EXC-294-BIOSS/
info:eu-repo/grantAgreement/DFG//GSC 4-SGBM/
info:eu-repo/grantAgreement/MINECO//BIO2013-43184-P/ES/PAPEL DE LA PREFOLDINA EN EL NUCLEO DEPENDIENTE DE DELLAS EN ARABIDOPSIS./
[-]
Thanks:
We thank Cristina Ferrandiz and the members of the Hormone Signaling and Plasticity Laboratory at Instituto de Biologia Molecular y Celular de Plantas for discussions and critical reading of the manuscript, and Malcolm ...[+]
Type: Artículo

References

Vanneste, S., & Friml, J. (2009). Auxin: A Trigger for Change in Plant Development. Cell, 136(6), 1005-1016. doi:10.1016/j.cell.2009.03.001

WOODWARD, A. W. (2005). Auxin: Regulation, Action, and Interaction. Annals of Botany, 95(5), 707-735. doi:10.1093/aob/mci083

Abbas, M., Alabadí, D., & Blázquez, M. A. (2013). Differential growth at the apical hook: all roads lead to auxin. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00441 [+]
Vanneste, S., & Friml, J. (2009). Auxin: A Trigger for Change in Plant Development. Cell, 136(6), 1005-1016. doi:10.1016/j.cell.2009.03.001

WOODWARD, A. W. (2005). Auxin: Regulation, Action, and Interaction. Annals of Botany, 95(5), 707-735. doi:10.1093/aob/mci083

Abbas, M., Alabadí, D., & Blázquez, M. A. (2013). Differential growth at the apical hook: all roads lead to auxin. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00441

Zadnikova, P., Petrasek, J., Marhavy, P., Raz, V., Vandenbussche, F., Ding, Z., … Benkova, E. (2010). Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana. Development, 137(4), 607-617. doi:10.1242/dev.041277

Rakusová, H., Abbas, M., Han, H., Song, S., Robert, H. S., & Friml, J. (2016). Termination of Shoot Gravitropic Responses by Auxin Feedback on PIN3 Polarity. Current Biology, 26(22), 3026-3032. doi:10.1016/j.cub.2016.08.067

Rakusová, H., Gallego-Bartolomé, J., Vanstraelen, M., Robert, H. S., Alabadí, D., Blázquez, M. A., … Friml, J. (2011). Polarization of PIN3-dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana. The Plant Journal, 67(5), 817-826. doi:10.1111/j.1365-313x.2011.04636.x

Spalding, E. P. (2013). Diverting the downhill flow of auxin to steer growth during tropisms. American Journal of Botany, 100(1), 203-214. doi:10.3732/ajb.1200420

Muday, G. K., & DeLong, A. (2001). Polar auxin transport: controlling where and how much. Trends in Plant Science, 6(11), 535-542. doi:10.1016/s1360-1385(01)02101-x

Swarup, R., & Bennett, M. (2003). Auxin Transport. Developmental Cell, 5(6), 824-826. doi:10.1016/s1534-5807(03)00370-8

Adamowski, M., & Friml, J. (2015). PIN-Dependent Auxin Transport: Action, Regulation, and Evolution. The Plant Cell, 27(1), 20-32. doi:10.1105/tpc.114.134874

Esmon, C. A., Tinsley, A. G., Ljung, K., Sandberg, G., Hearne, L. B., & Liscum, E. (2005). A gradient of auxin and auxin-dependent transcription precedes tropic growth responses. Proceedings of the National Academy of Sciences, 103(1), 236-241. doi:10.1073/pnas.0507127103

Fuchs, I., Philippar, K., Ljung, K., Sandberg, G., & Hedrich, R. (2003). Blue light regulates an auxin-induced K+-channel gene in the maize coleoptile. Proceedings of the National Academy of Sciences, 100(20), 11795-11800. doi:10.1073/pnas.2032704100

Hohm, T., Demarsy, E., Quan, C., Allenbach Petrolati, L., Preuten, T., Vernoux, T., … Fankhauser, C. (2014). Plasma membrane H + ‐ ATP ase regulation is required for auxin gradient formation preceding phototropic growth. Molecular Systems Biology, 10(9), 751. doi:10.15252/msb.20145247

Band, L. R., Wells, D. M., Larrieu, A., Sun, J., Middleton, A. M., French, A. P., … Bennett, M. J. (2012). Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism. Proceedings of the National Academy of Sciences, 109(12), 4668-4673. doi:10.1073/pnas.1201498109

Kramer, E. M. (2004). PIN and AUX/LAX proteins: their role in auxin accumulation. Trends in Plant Science, 9(12), 578-582. doi:10.1016/j.tplants.2004.10.010

Grieneisen, V. A., Xu, J., Marée, A. F. M., Hogeweg, P., & Scheres, B. (2007). Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature, 449(7165), 1008-1013. doi:10.1038/nature06215

Mellor, N., Band, L. R., Pěnčík, A., Novák, O., Rashed, A., Holman, T., … Owen, M. R. (2016). Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis. Proceedings of the National Academy of Sciences, 113(39), 11022-11027. doi:10.1073/pnas.1604458113

Porco, S., Pěnčík, A., Rashed, A., Voß, U., Casanova-Sáez, R., Bishopp, A., … Ljung, K. (2016). Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in Arabidopsis. Proceedings of the National Academy of Sciences, 113(39), 11016-11021. doi:10.1073/pnas.1604375113

Zhang, J., Lin, J. E., Harris, C., Campos Mastrotti Pereira, F., Wu, F., Blakeslee, J. J., & Peer, W. A. (2016). DAO1 catalyzes temporal and tissue-specific oxidative inactivation of auxin in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 113(39), 11010-11015. doi:10.1073/pnas.1604769113

Qin, G., Gu, H., Zhao, Y., Ma, Z., Shi, G., Yang, Y., … Qu, L.-J. (2005). An Indole-3-Acetic Acid Carboxyl Methyltransferase Regulates Arabidopsis Leaf Development. The Plant Cell, 17(10), 2693-2704. doi:10.1105/tpc.105.034959

Zhao, N., Ferrer, J.-L., Ross, J., Guan, J., Yang, Y., Pichersky, E., … Chen, F. (2007). Structural, Biochemical, and Phylogenetic Analyses Suggest That Indole-3-Acetic Acid Methyltransferase Is an Evolutionarily Ancient Member of the SABATH Family. Plant Physiology, 146(2), 455-467. doi:10.1104/pp.107.110049

Zubieta, C., Ross, J. R., Koscheski, P., Yang, Y., Pichersky, E., & Noel, J. P. (2003). Structural Basis for Substrate Recognition in the Salicylic Acid Carboxyl Methyltransferase Family. The Plant Cell, 15(8), 1704-1716. doi:10.1105/tpc.014548

Li, L., Hou, X., Tsuge, T., Ding, M., Aoyama, T., Oka, A., … Qu, L.-J. (2007). The possible action mechanisms of indole-3-acetic acid methyl ester in Arabidopsis. Plant Cell Reports, 27(3), 575-584. doi:10.1007/s00299-007-0458-9

Yang, Y., Xu, R., Ma, C., Vlot, A. C., Klessig, D. F., & Pichersky, E. (2008). Inactive Methyl Indole-3-Acetic Acid Ester Can Be Hydrolyzed and Activated by Several Esterases Belonging to the AtMES Esterase Family of Arabidopsis. Plant Physiology, 147(3), 1034-1045. doi:10.1104/pp.108.118224

Friml, J., Wiśniewska, J., Benková, E., Mendgen, K., & Palme, K. (2002). Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature, 415(6873), 806-809. doi:10.1038/415806a

Péret, B., Middleton, A. M., French, A. P., Larrieu, A., Bishopp, A., Njo, M., … Bennett, M. J. (2013). Sequential induction of auxin efflux and influx carriers regulates lateral root emergence. Molecular Systems Biology, 9(1), 699. doi:10.1038/msb.2013.43

Sauer, M., Balla, J., Luschnig, C., Wisniewska, J., Reinohl, V., Friml, J., & Benkova, E. (2006). Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes & Development, 20(20), 2902-2911. doi:10.1101/gad.390806

Chen, Q., Liu, Y., Maere, S., Lee, E., Van Isterdael, G., Xie, Z., … Vanneste, S. (2015). A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development. Nature Communications, 6(1). doi:10.1038/ncomms9821

Rakusová, H., Fendrych, M., & Friml, J. (2015). Intracellular trafficking and PIN-mediated cell polarity during tropic responses in plants. Current Opinion in Plant Biology, 23, 116-123. doi:10.1016/j.pbi.2014.12.002

Wend, S., Bosco, C. D., Kämpf, M. M., Ren, F., Palme, K., Weber, W., … Zurbriggen, M. D. (2013). A quantitative ratiometric sensor for time-resolved analysis of auxin dynamics. Scientific Reports, 3(1). doi:10.1038/srep02052

Zourelidou, M., Absmanner, B., Weller, B., Barbosa, I. C., Willige, B. C., Fastner, A., … Schwechheimer, C. (2014). Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID. eLife, 3. doi:10.7554/elife.02860

Zheng, Z., Guo, Y., Novák, O., Chen, W., Ljung, K., Noel, J. P., & Chory, J. (2016). Local auxin metabolism regulates environment-induced hypocotyl elongation. Nature Plants, 2(4). doi:10.1038/nplants.2016.25

Brunoud, G., Wells, D. M., Oliva, M., Larrieu, A., Mirabet, V., Burrow, A. H., … Vernoux, T. (2012). A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature, 482(7383), 103-106. doi:10.1038/nature10791

Friml, J., Vieten, A., Sauer, M., Weijers, D., Schwarz, H., Hamann, T., … Jürgens, G. (2003). Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis. Nature, 426(6963), 147-153. doi:10.1038/nature02085

Alonso, J. M. (2003). Genome-Wide Insertional Mutagenesis of Arabidopsis thaliana. Science, 301(5633), 653-657. doi:10.1126/science.1086391

Abbas, M., Berckhan, S., Rooney, D. J., Gibbs, D. J., Vicente Conde, J., Sousa Correia, C., … Holdsworth, M. J. (2015). Oxygen Sensing Coordinates Photomorphogenesis to Facilitate Seedling Survival. Current Biology, 25(11), 1483-1488. doi:10.1016/j.cub.2015.03.060

Gallego-Bartolomé, J., Kami, C., Fankhauser, C., Alabadí, D., & Blázquez, M. A. (2011). A Hormonal Regulatory Module That Provides Flexibility to Tropic Responses. Plant Physiology, 156(4), 1819-1825. doi:10.1104/pp.111.173971

Willige, B. C., Isono, E., Richter, R., Zourelidou, M., & Schwechheimer, C. (2011). Gibberellin Regulates PIN-FORMED Abundance and Is Required for Auxin Transport–Dependent Growth and Development in Arabidopsis thaliana. The Plant Cell, 23(6), 2184-2195. doi:10.1105/tpc.111.086355

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record