Mostrar el registro sencillo del ítem
dc.contributor.author | Abbas, Mohamad | es_ES |
dc.contributor.author | Hernández-García, Jorge | es_ES |
dc.contributor.author | Pollmann, Stephan | es_ES |
dc.contributor.author | Samodelov, S.L. | es_ES |
dc.contributor.author | Kolb, M. | es_ES |
dc.contributor.author | Friml, J. | es_ES |
dc.contributor.author | Hammes, U. | es_ES |
dc.contributor.author | Zurbriggen, M.D. | es_ES |
dc.contributor.author | Blazquez Rodriguez, Miguel Angel | es_ES |
dc.contributor.author | Alabadí Diego, David | es_ES |
dc.date.accessioned | 2020-05-22T03:02:36Z | |
dc.date.available | 2020-05-22T03:02:36Z | |
dc.date.issued | 2018-06-26 | es_ES |
dc.identifier.issn | 0027-8424 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/144088 | |
dc.description.abstract | [EN] Asymmetric auxin distribution is instrumental for the differential growth that causes organ bending on tropic stimuli and curvatures during plant development. Local differences in auxin concentrations are achieved mainly by polarized cellular distribution of PIN auxin transporters, but whether other mechanisms involving auxin homeostasis are also relevant for the formation of auxin gradients is not clear. Here we show that auxin methylation is required for asymmetric auxin distribution across the hypocotyl, particularly during its response to gravity. We found that loss-of-function mutants in Arabidopsis IAA CARBOXYL METHYLTRANSFERASE1 (IAMT1) prematurely unfold the apical hook, and that their hypocotyls are impaired in gravitropic reorientation. This defect is linked to an auxin-dependent increase in PIN gene expression, leading to an increased polar auxin transport and lack of asymmetric distribution of PIN3 in the iamt1 mutant. Gravitropic reorientation in the iamt1 mutant could be restored with either endodermis-specific expression of IAMT1 or partial inhibition of polar auxin transport, which also results in normal PIN gene expression levels. We propose that IAA methylation is necessary in gravity-sensing cells to restrict polar auxin transport within the range of auxin levels that allow for differential responses. | es_ES |
dc.description.sponsorship | We thank Cristina Ferrandiz and the members of the Hormone Signaling and Plasticity Laboratory at Instituto de Biologia Molecular y Celular de Plantas for discussions and critical reading of the manuscript, and Malcolm Bennett for providing seeds of the reporter lines. Work in the authors' laboratories has been funded by grants from the Spanish Ministry of Economy and Competitiveness (BIO2013-43184-P, to D.A. and M.A.B., and BFU2014-55575-R, to S.P.), the German Research Foundation (EXC-1028-CEPLAS, EXC-294-BIOSS and GSC 4-SGBM, to M.D.Z.), the European Union (H2020-MSCA-RISE-2014-644435, to M.A.B. and D.A.), and the European Research Council (Project ERC-2011-StG-20101109-PSDP, to J.F.). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Proceedings of the National Academy of Sciences | es_ES |
dc.relation.ispartof | Proceedings of the National Academy of Sciences | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Hormone regulation | es_ES |
dc.subject | Auxin metabolism | es_ES |
dc.subject | Homeostasis | es_ES |
dc.subject | Gravitropism | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | Auxin methylation is required for differential growth in Arabidopsis | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1073/pnas.1806565115 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/644435/EU/Evaluation of Plant Signaling Networks in Natural Environments/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BFU2014-55575-R/ES/DISECCION AMPLIO DE LA MADURACION DE SEMILLAS CON ENFOQUE EN LAS BASES MOLECULARES DEL CRECIMIENTO CELULAR DE EXPANSION RAPIDO Y DE LA PRODUCCION DE NUTRIENTES ALMACENADOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/DFG//EXC-1028-CEPLAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/282300/EU/POLARITY AND SUBCELLULAR DYNAMICS IN PLANTS/PSDP/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/DFG//EXC-294-BIOSS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/DFG//GSC 4-SGBM/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BIO2013-43184-P/ES/PAPEL DE LA PREFOLDINA EN EL NUCLEO DEPENDIENTE DE DELLAS EN ARABIDOPSIS./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes | es_ES |
dc.description.bibliographicCitation | Abbas, M.; Hernández-García, J.; Pollmann, S.; Samodelov, S.; Kolb, M.; Friml, J.; Hammes, U.... (2018). Auxin methylation is required for differential growth in Arabidopsis. Proceedings of the National Academy of Sciences. 115(26):6864-6869. https://doi.org/10.1073/pnas.1806565115 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1073/pnas.1806565115 | es_ES |
dc.description.upvformatpinicio | 6864 | es_ES |
dc.description.upvformatpfin | 6869 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 115 | es_ES |
dc.description.issue | 26 | es_ES |
dc.identifier.pmid | 29899148 | es_ES |
dc.identifier.pmcid | PMC6042151 | es_ES |
dc.relation.pasarela | S\367188 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | European Research Council | es_ES |
dc.contributor.funder | Deutsche Forschungsgemeinschaft | es_ES |
dc.contributor.funder | European Commission | |
dc.description.references | Vanneste, S., & Friml, J. (2009). Auxin: A Trigger for Change in Plant Development. Cell, 136(6), 1005-1016. doi:10.1016/j.cell.2009.03.001 | es_ES |
dc.description.references | WOODWARD, A. W. (2005). Auxin: Regulation, Action, and Interaction. Annals of Botany, 95(5), 707-735. doi:10.1093/aob/mci083 | es_ES |
dc.description.references | Abbas, M., Alabadí, D., & Blázquez, M. A. (2013). Differential growth at the apical hook: all roads lead to auxin. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00441 | es_ES |
dc.description.references | Zadnikova, P., Petrasek, J., Marhavy, P., Raz, V., Vandenbussche, F., Ding, Z., … Benkova, E. (2010). Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana. Development, 137(4), 607-617. doi:10.1242/dev.041277 | es_ES |
dc.description.references | Rakusová, H., Abbas, M., Han, H., Song, S., Robert, H. S., & Friml, J. (2016). Termination of Shoot Gravitropic Responses by Auxin Feedback on PIN3 Polarity. Current Biology, 26(22), 3026-3032. doi:10.1016/j.cub.2016.08.067 | es_ES |
dc.description.references | Rakusová, H., Gallego-Bartolomé, J., Vanstraelen, M., Robert, H. S., Alabadí, D., Blázquez, M. A., … Friml, J. (2011). Polarization of PIN3-dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana. The Plant Journal, 67(5), 817-826. doi:10.1111/j.1365-313x.2011.04636.x | es_ES |
dc.description.references | Spalding, E. P. (2013). Diverting the downhill flow of auxin to steer growth during tropisms. American Journal of Botany, 100(1), 203-214. doi:10.3732/ajb.1200420 | es_ES |
dc.description.references | Muday, G. K., & DeLong, A. (2001). Polar auxin transport: controlling where and how much. Trends in Plant Science, 6(11), 535-542. doi:10.1016/s1360-1385(01)02101-x | es_ES |
dc.description.references | Swarup, R., & Bennett, M. (2003). Auxin Transport. Developmental Cell, 5(6), 824-826. doi:10.1016/s1534-5807(03)00370-8 | es_ES |
dc.description.references | Adamowski, M., & Friml, J. (2015). PIN-Dependent Auxin Transport: Action, Regulation, and Evolution. The Plant Cell, 27(1), 20-32. doi:10.1105/tpc.114.134874 | es_ES |
dc.description.references | Esmon, C. A., Tinsley, A. G., Ljung, K., Sandberg, G., Hearne, L. B., & Liscum, E. (2005). A gradient of auxin and auxin-dependent transcription precedes tropic growth responses. Proceedings of the National Academy of Sciences, 103(1), 236-241. doi:10.1073/pnas.0507127103 | es_ES |
dc.description.references | Fuchs, I., Philippar, K., Ljung, K., Sandberg, G., & Hedrich, R. (2003). Blue light regulates an auxin-induced K+-channel gene in the maize coleoptile. Proceedings of the National Academy of Sciences, 100(20), 11795-11800. doi:10.1073/pnas.2032704100 | es_ES |
dc.description.references | Hohm, T., Demarsy, E., Quan, C., Allenbach Petrolati, L., Preuten, T., Vernoux, T., … Fankhauser, C. (2014). Plasma membrane H + ‐ ATP ase regulation is required for auxin gradient formation preceding phototropic growth. Molecular Systems Biology, 10(9), 751. doi:10.15252/msb.20145247 | es_ES |
dc.description.references | Band, L. R., Wells, D. M., Larrieu, A., Sun, J., Middleton, A. M., French, A. P., … Bennett, M. J. (2012). Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism. Proceedings of the National Academy of Sciences, 109(12), 4668-4673. doi:10.1073/pnas.1201498109 | es_ES |
dc.description.references | Kramer, E. M. (2004). PIN and AUX/LAX proteins: their role in auxin accumulation. Trends in Plant Science, 9(12), 578-582. doi:10.1016/j.tplants.2004.10.010 | es_ES |
dc.description.references | Grieneisen, V. A., Xu, J., Marée, A. F. M., Hogeweg, P., & Scheres, B. (2007). Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature, 449(7165), 1008-1013. doi:10.1038/nature06215 | es_ES |
dc.description.references | Mellor, N., Band, L. R., Pěnčík, A., Novák, O., Rashed, A., Holman, T., … Owen, M. R. (2016). Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis. Proceedings of the National Academy of Sciences, 113(39), 11022-11027. doi:10.1073/pnas.1604458113 | es_ES |
dc.description.references | Porco, S., Pěnčík, A., Rashed, A., Voß, U., Casanova-Sáez, R., Bishopp, A., … Ljung, K. (2016). Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in Arabidopsis. Proceedings of the National Academy of Sciences, 113(39), 11016-11021. doi:10.1073/pnas.1604375113 | es_ES |
dc.description.references | Zhang, J., Lin, J. E., Harris, C., Campos Mastrotti Pereira, F., Wu, F., Blakeslee, J. J., & Peer, W. A. (2016). DAO1 catalyzes temporal and tissue-specific oxidative inactivation of auxin in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 113(39), 11010-11015. doi:10.1073/pnas.1604769113 | es_ES |
dc.description.references | Qin, G., Gu, H., Zhao, Y., Ma, Z., Shi, G., Yang, Y., … Qu, L.-J. (2005). An Indole-3-Acetic Acid Carboxyl Methyltransferase Regulates Arabidopsis Leaf Development. The Plant Cell, 17(10), 2693-2704. doi:10.1105/tpc.105.034959 | es_ES |
dc.description.references | Zhao, N., Ferrer, J.-L., Ross, J., Guan, J., Yang, Y., Pichersky, E., … Chen, F. (2007). Structural, Biochemical, and Phylogenetic Analyses Suggest That Indole-3-Acetic Acid Methyltransferase Is an Evolutionarily Ancient Member of the SABATH Family. Plant Physiology, 146(2), 455-467. doi:10.1104/pp.107.110049 | es_ES |
dc.description.references | Zubieta, C., Ross, J. R., Koscheski, P., Yang, Y., Pichersky, E., & Noel, J. P. (2003). Structural Basis for Substrate Recognition in the Salicylic Acid Carboxyl Methyltransferase Family. The Plant Cell, 15(8), 1704-1716. doi:10.1105/tpc.014548 | es_ES |
dc.description.references | Li, L., Hou, X., Tsuge, T., Ding, M., Aoyama, T., Oka, A., … Qu, L.-J. (2007). The possible action mechanisms of indole-3-acetic acid methyl ester in Arabidopsis. Plant Cell Reports, 27(3), 575-584. doi:10.1007/s00299-007-0458-9 | es_ES |
dc.description.references | Yang, Y., Xu, R., Ma, C., Vlot, A. C., Klessig, D. F., & Pichersky, E. (2008). Inactive Methyl Indole-3-Acetic Acid Ester Can Be Hydrolyzed and Activated by Several Esterases Belonging to the AtMES Esterase Family of Arabidopsis. Plant Physiology, 147(3), 1034-1045. doi:10.1104/pp.108.118224 | es_ES |
dc.description.references | Friml, J., Wiśniewska, J., Benková, E., Mendgen, K., & Palme, K. (2002). Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature, 415(6873), 806-809. doi:10.1038/415806a | es_ES |
dc.description.references | Péret, B., Middleton, A. M., French, A. P., Larrieu, A., Bishopp, A., Njo, M., … Bennett, M. J. (2013). Sequential induction of auxin efflux and influx carriers regulates lateral root emergence. Molecular Systems Biology, 9(1), 699. doi:10.1038/msb.2013.43 | es_ES |
dc.description.references | Sauer, M., Balla, J., Luschnig, C., Wisniewska, J., Reinohl, V., Friml, J., & Benkova, E. (2006). Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes & Development, 20(20), 2902-2911. doi:10.1101/gad.390806 | es_ES |
dc.description.references | Chen, Q., Liu, Y., Maere, S., Lee, E., Van Isterdael, G., Xie, Z., … Vanneste, S. (2015). A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development. Nature Communications, 6(1). doi:10.1038/ncomms9821 | es_ES |
dc.description.references | Rakusová, H., Fendrych, M., & Friml, J. (2015). Intracellular trafficking and PIN-mediated cell polarity during tropic responses in plants. Current Opinion in Plant Biology, 23, 116-123. doi:10.1016/j.pbi.2014.12.002 | es_ES |
dc.description.references | Wend, S., Bosco, C. D., Kämpf, M. M., Ren, F., Palme, K., Weber, W., … Zurbriggen, M. D. (2013). A quantitative ratiometric sensor for time-resolved analysis of auxin dynamics. Scientific Reports, 3(1). doi:10.1038/srep02052 | es_ES |
dc.description.references | Zourelidou, M., Absmanner, B., Weller, B., Barbosa, I. C., Willige, B. C., Fastner, A., … Schwechheimer, C. (2014). Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID. eLife, 3. doi:10.7554/elife.02860 | es_ES |
dc.description.references | Zheng, Z., Guo, Y., Novák, O., Chen, W., Ljung, K., Noel, J. P., & Chory, J. (2016). Local auxin metabolism regulates environment-induced hypocotyl elongation. Nature Plants, 2(4). doi:10.1038/nplants.2016.25 | es_ES |
dc.description.references | Brunoud, G., Wells, D. M., Oliva, M., Larrieu, A., Mirabet, V., Burrow, A. H., … Vernoux, T. (2012). A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature, 482(7383), 103-106. doi:10.1038/nature10791 | es_ES |
dc.description.references | Friml, J., Vieten, A., Sauer, M., Weijers, D., Schwarz, H., Hamann, T., … Jürgens, G. (2003). Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis. Nature, 426(6963), 147-153. doi:10.1038/nature02085 | es_ES |
dc.description.references | Alonso, J. M. (2003). Genome-Wide Insertional Mutagenesis of Arabidopsis thaliana. Science, 301(5633), 653-657. doi:10.1126/science.1086391 | es_ES |
dc.description.references | Abbas, M., Berckhan, S., Rooney, D. J., Gibbs, D. J., Vicente Conde, J., Sousa Correia, C., … Holdsworth, M. J. (2015). Oxygen Sensing Coordinates Photomorphogenesis to Facilitate Seedling Survival. Current Biology, 25(11), 1483-1488. doi:10.1016/j.cub.2015.03.060 | es_ES |
dc.description.references | Gallego-Bartolomé, J., Kami, C., Fankhauser, C., Alabadí, D., & Blázquez, M. A. (2011). A Hormonal Regulatory Module That Provides Flexibility to Tropic Responses. Plant Physiology, 156(4), 1819-1825. doi:10.1104/pp.111.173971 | es_ES |
dc.description.references | Willige, B. C., Isono, E., Richter, R., Zourelidou, M., & Schwechheimer, C. (2011). Gibberellin Regulates PIN-FORMED Abundance and Is Required for Auxin Transport–Dependent Growth and Development in Arabidopsis thaliana. The Plant Cell, 23(6), 2184-2195. doi:10.1105/tpc.111.086355 | es_ES |