- -

Auxin methylation is required for differential growth in Arabidopsis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Auxin methylation is required for differential growth in Arabidopsis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Abbas, Mohamad es_ES
dc.contributor.author Hernández-García, Jorge es_ES
dc.contributor.author Pollmann, Stephan es_ES
dc.contributor.author Samodelov, S.L. es_ES
dc.contributor.author Kolb, M. es_ES
dc.contributor.author Friml, J. es_ES
dc.contributor.author Hammes, U. es_ES
dc.contributor.author Zurbriggen, M.D. es_ES
dc.contributor.author Blazquez Rodriguez, Miguel Angel es_ES
dc.contributor.author Alabadí Diego, David es_ES
dc.date.accessioned 2020-05-22T03:02:36Z
dc.date.available 2020-05-22T03:02:36Z
dc.date.issued 2018-06-26 es_ES
dc.identifier.issn 0027-8424 es_ES
dc.identifier.uri http://hdl.handle.net/10251/144088
dc.description.abstract [EN] Asymmetric auxin distribution is instrumental for the differential growth that causes organ bending on tropic stimuli and curvatures during plant development. Local differences in auxin concentrations are achieved mainly by polarized cellular distribution of PIN auxin transporters, but whether other mechanisms involving auxin homeostasis are also relevant for the formation of auxin gradients is not clear. Here we show that auxin methylation is required for asymmetric auxin distribution across the hypocotyl, particularly during its response to gravity. We found that loss-of-function mutants in Arabidopsis IAA CARBOXYL METHYLTRANSFERASE1 (IAMT1) prematurely unfold the apical hook, and that their hypocotyls are impaired in gravitropic reorientation. This defect is linked to an auxin-dependent increase in PIN gene expression, leading to an increased polar auxin transport and lack of asymmetric distribution of PIN3 in the iamt1 mutant. Gravitropic reorientation in the iamt1 mutant could be restored with either endodermis-specific expression of IAMT1 or partial inhibition of polar auxin transport, which also results in normal PIN gene expression levels. We propose that IAA methylation is necessary in gravity-sensing cells to restrict polar auxin transport within the range of auxin levels that allow for differential responses. es_ES
dc.description.sponsorship We thank Cristina Ferrandiz and the members of the Hormone Signaling and Plasticity Laboratory at Instituto de Biologia Molecular y Celular de Plantas for discussions and critical reading of the manuscript, and Malcolm Bennett for providing seeds of the reporter lines. Work in the authors' laboratories has been funded by grants from the Spanish Ministry of Economy and Competitiveness (BIO2013-43184-P, to D.A. and M.A.B., and BFU2014-55575-R, to S.P.), the German Research Foundation (EXC-1028-CEPLAS, EXC-294-BIOSS and GSC 4-SGBM, to M.D.Z.), the European Union (H2020-MSCA-RISE-2014-644435, to M.A.B. and D.A.), and the European Research Council (Project ERC-2011-StG-20101109-PSDP, to J.F.). es_ES
dc.language Inglés es_ES
dc.publisher Proceedings of the National Academy of Sciences es_ES
dc.relation.ispartof Proceedings of the National Academy of Sciences es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Hormone regulation es_ES
dc.subject Auxin metabolism es_ES
dc.subject Homeostasis es_ES
dc.subject Gravitropism es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Auxin methylation is required for differential growth in Arabidopsis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1073/pnas.1806565115 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/644435/EU/Evaluation of Plant Signaling Networks in Natural Environments/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BFU2014-55575-R/ES/DISECCION AMPLIO DE LA MADURACION DE SEMILLAS CON ENFOQUE EN LAS BASES MOLECULARES DEL CRECIMIENTO CELULAR DE EXPANSION RAPIDO Y DE LA PRODUCCION DE NUTRIENTES ALMACENADOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DFG//EXC-1028-CEPLAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/282300/EU/POLARITY AND SUBCELLULAR DYNAMICS IN PLANTS/PSDP/
dc.relation.projectID info:eu-repo/grantAgreement/DFG//EXC-294-BIOSS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/DFG//GSC 4-SGBM/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2013-43184-P/ES/PAPEL DE LA PREFOLDINA EN EL NUCLEO DEPENDIENTE DE DELLAS EN ARABIDOPSIS./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.description.bibliographicCitation Abbas, M.; Hernández-García, J.; Pollmann, S.; Samodelov, S.; Kolb, M.; Friml, J.; Hammes, U.... (2018). Auxin methylation is required for differential growth in Arabidopsis. Proceedings of the National Academy of Sciences. 115(26):6864-6869. https://doi.org/10.1073/pnas.1806565115 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1073/pnas.1806565115 es_ES
dc.description.upvformatpinicio 6864 es_ES
dc.description.upvformatpfin 6869 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 115 es_ES
dc.description.issue 26 es_ES
dc.identifier.pmid 29899148 es_ES
dc.identifier.pmcid PMC6042151 es_ES
dc.relation.pasarela S\367188 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder European Research Council es_ES
dc.contributor.funder Deutsche Forschungsgemeinschaft es_ES
dc.contributor.funder European Commission
dc.description.references Vanneste, S., & Friml, J. (2009). Auxin: A Trigger for Change in Plant Development. Cell, 136(6), 1005-1016. doi:10.1016/j.cell.2009.03.001 es_ES
dc.description.references WOODWARD, A. W. (2005). Auxin: Regulation, Action, and Interaction. Annals of Botany, 95(5), 707-735. doi:10.1093/aob/mci083 es_ES
dc.description.references Abbas, M., Alabadí, D., & Blázquez, M. A. (2013). Differential growth at the apical hook: all roads lead to auxin. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00441 es_ES
dc.description.references Zadnikova, P., Petrasek, J., Marhavy, P., Raz, V., Vandenbussche, F., Ding, Z., … Benkova, E. (2010). Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana. Development, 137(4), 607-617. doi:10.1242/dev.041277 es_ES
dc.description.references Rakusová, H., Abbas, M., Han, H., Song, S., Robert, H. S., & Friml, J. (2016). Termination of Shoot Gravitropic Responses by Auxin Feedback on PIN3 Polarity. Current Biology, 26(22), 3026-3032. doi:10.1016/j.cub.2016.08.067 es_ES
dc.description.references Rakusová, H., Gallego-Bartolomé, J., Vanstraelen, M., Robert, H. S., Alabadí, D., Blázquez, M. A., … Friml, J. (2011). Polarization of PIN3-dependent auxin transport for hypocotyl gravitropic response in Arabidopsis thaliana. The Plant Journal, 67(5), 817-826. doi:10.1111/j.1365-313x.2011.04636.x es_ES
dc.description.references Spalding, E. P. (2013). Diverting the downhill flow of auxin to steer growth during tropisms. American Journal of Botany, 100(1), 203-214. doi:10.3732/ajb.1200420 es_ES
dc.description.references Muday, G. K., & DeLong, A. (2001). Polar auxin transport: controlling where and how much. Trends in Plant Science, 6(11), 535-542. doi:10.1016/s1360-1385(01)02101-x es_ES
dc.description.references Swarup, R., & Bennett, M. (2003). Auxin Transport. Developmental Cell, 5(6), 824-826. doi:10.1016/s1534-5807(03)00370-8 es_ES
dc.description.references Adamowski, M., & Friml, J. (2015). PIN-Dependent Auxin Transport: Action, Regulation, and Evolution. The Plant Cell, 27(1), 20-32. doi:10.1105/tpc.114.134874 es_ES
dc.description.references Esmon, C. A., Tinsley, A. G., Ljung, K., Sandberg, G., Hearne, L. B., & Liscum, E. (2005). A gradient of auxin and auxin-dependent transcription precedes tropic growth responses. Proceedings of the National Academy of Sciences, 103(1), 236-241. doi:10.1073/pnas.0507127103 es_ES
dc.description.references Fuchs, I., Philippar, K., Ljung, K., Sandberg, G., & Hedrich, R. (2003). Blue light regulates an auxin-induced K+-channel gene in the maize coleoptile. Proceedings of the National Academy of Sciences, 100(20), 11795-11800. doi:10.1073/pnas.2032704100 es_ES
dc.description.references Hohm, T., Demarsy, E., Quan, C., Allenbach Petrolati, L., Preuten, T., Vernoux, T., … Fankhauser, C. (2014). Plasma membrane H + ‐ ATP ase regulation is required for auxin gradient formation preceding phototropic growth. Molecular Systems Biology, 10(9), 751. doi:10.15252/msb.20145247 es_ES
dc.description.references Band, L. R., Wells, D. M., Larrieu, A., Sun, J., Middleton, A. M., French, A. P., … Bennett, M. J. (2012). Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism. Proceedings of the National Academy of Sciences, 109(12), 4668-4673. doi:10.1073/pnas.1201498109 es_ES
dc.description.references Kramer, E. M. (2004). PIN and AUX/LAX proteins: their role in auxin accumulation. Trends in Plant Science, 9(12), 578-582. doi:10.1016/j.tplants.2004.10.010 es_ES
dc.description.references Grieneisen, V. A., Xu, J., Marée, A. F. M., Hogeweg, P., & Scheres, B. (2007). Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature, 449(7165), 1008-1013. doi:10.1038/nature06215 es_ES
dc.description.references Mellor, N., Band, L. R., Pěnčík, A., Novák, O., Rashed, A., Holman, T., … Owen, M. R. (2016). Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis. Proceedings of the National Academy of Sciences, 113(39), 11022-11027. doi:10.1073/pnas.1604458113 es_ES
dc.description.references Porco, S., Pěnčík, A., Rashed, A., Voß, U., Casanova-Sáez, R., Bishopp, A., … Ljung, K. (2016). Dioxygenase-encoding AtDAO1 gene controls IAA oxidation and homeostasis in Arabidopsis. Proceedings of the National Academy of Sciences, 113(39), 11016-11021. doi:10.1073/pnas.1604375113 es_ES
dc.description.references Zhang, J., Lin, J. E., Harris, C., Campos Mastrotti Pereira, F., Wu, F., Blakeslee, J. J., & Peer, W. A. (2016). DAO1 catalyzes temporal and tissue-specific oxidative inactivation of auxin in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 113(39), 11010-11015. doi:10.1073/pnas.1604769113 es_ES
dc.description.references Qin, G., Gu, H., Zhao, Y., Ma, Z., Shi, G., Yang, Y., … Qu, L.-J. (2005). An Indole-3-Acetic Acid Carboxyl Methyltransferase Regulates Arabidopsis Leaf Development. The Plant Cell, 17(10), 2693-2704. doi:10.1105/tpc.105.034959 es_ES
dc.description.references Zhao, N., Ferrer, J.-L., Ross, J., Guan, J., Yang, Y., Pichersky, E., … Chen, F. (2007). Structural, Biochemical, and Phylogenetic Analyses Suggest That Indole-3-Acetic Acid Methyltransferase Is an Evolutionarily Ancient Member of the SABATH Family. Plant Physiology, 146(2), 455-467. doi:10.1104/pp.107.110049 es_ES
dc.description.references Zubieta, C., Ross, J. R., Koscheski, P., Yang, Y., Pichersky, E., & Noel, J. P. (2003). Structural Basis for Substrate Recognition in the Salicylic Acid Carboxyl Methyltransferase Family. The Plant Cell, 15(8), 1704-1716. doi:10.1105/tpc.014548 es_ES
dc.description.references Li, L., Hou, X., Tsuge, T., Ding, M., Aoyama, T., Oka, A., … Qu, L.-J. (2007). The possible action mechanisms of indole-3-acetic acid methyl ester in Arabidopsis. Plant Cell Reports, 27(3), 575-584. doi:10.1007/s00299-007-0458-9 es_ES
dc.description.references Yang, Y., Xu, R., Ma, C., Vlot, A. C., Klessig, D. F., & Pichersky, E. (2008). Inactive Methyl Indole-3-Acetic Acid Ester Can Be Hydrolyzed and Activated by Several Esterases Belonging to the AtMES Esterase Family of Arabidopsis. Plant Physiology, 147(3), 1034-1045. doi:10.1104/pp.108.118224 es_ES
dc.description.references Friml, J., Wiśniewska, J., Benková, E., Mendgen, K., & Palme, K. (2002). Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature, 415(6873), 806-809. doi:10.1038/415806a es_ES
dc.description.references Péret, B., Middleton, A. M., French, A. P., Larrieu, A., Bishopp, A., Njo, M., … Bennett, M. J. (2013). Sequential induction of auxin efflux and influx carriers regulates lateral root emergence. Molecular Systems Biology, 9(1), 699. doi:10.1038/msb.2013.43 es_ES
dc.description.references Sauer, M., Balla, J., Luschnig, C., Wisniewska, J., Reinohl, V., Friml, J., & Benkova, E. (2006). Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes & Development, 20(20), 2902-2911. doi:10.1101/gad.390806 es_ES
dc.description.references Chen, Q., Liu, Y., Maere, S., Lee, E., Van Isterdael, G., Xie, Z., … Vanneste, S. (2015). A coherent transcriptional feed-forward motif model for mediating auxin-sensitive PIN3 expression during lateral root development. Nature Communications, 6(1). doi:10.1038/ncomms9821 es_ES
dc.description.references Rakusová, H., Fendrych, M., & Friml, J. (2015). Intracellular trafficking and PIN-mediated cell polarity during tropic responses in plants. Current Opinion in Plant Biology, 23, 116-123. doi:10.1016/j.pbi.2014.12.002 es_ES
dc.description.references Wend, S., Bosco, C. D., Kämpf, M. M., Ren, F., Palme, K., Weber, W., … Zurbriggen, M. D. (2013). A quantitative ratiometric sensor for time-resolved analysis of auxin dynamics. Scientific Reports, 3(1). doi:10.1038/srep02052 es_ES
dc.description.references Zourelidou, M., Absmanner, B., Weller, B., Barbosa, I. C., Willige, B. C., Fastner, A., … Schwechheimer, C. (2014). Auxin efflux by PIN-FORMED proteins is activated by two different protein kinases, D6 PROTEIN KINASE and PINOID. eLife, 3. doi:10.7554/elife.02860 es_ES
dc.description.references Zheng, Z., Guo, Y., Novák, O., Chen, W., Ljung, K., Noel, J. P., & Chory, J. (2016). Local auxin metabolism regulates environment-induced hypocotyl elongation. Nature Plants, 2(4). doi:10.1038/nplants.2016.25 es_ES
dc.description.references Brunoud, G., Wells, D. M., Oliva, M., Larrieu, A., Mirabet, V., Burrow, A. H., … Vernoux, T. (2012). A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature, 482(7383), 103-106. doi:10.1038/nature10791 es_ES
dc.description.references Friml, J., Vieten, A., Sauer, M., Weijers, D., Schwarz, H., Hamann, T., … Jürgens, G. (2003). Efflux-dependent auxin gradients establish the apical–basal axis of Arabidopsis. Nature, 426(6963), 147-153. doi:10.1038/nature02085 es_ES
dc.description.references Alonso, J. M. (2003). Genome-Wide Insertional Mutagenesis of Arabidopsis thaliana. Science, 301(5633), 653-657. doi:10.1126/science.1086391 es_ES
dc.description.references Abbas, M., Berckhan, S., Rooney, D. J., Gibbs, D. J., Vicente Conde, J., Sousa Correia, C., … Holdsworth, M. J. (2015). Oxygen Sensing Coordinates Photomorphogenesis to Facilitate Seedling Survival. Current Biology, 25(11), 1483-1488. doi:10.1016/j.cub.2015.03.060 es_ES
dc.description.references Gallego-Bartolomé, J., Kami, C., Fankhauser, C., Alabadí, D., & Blázquez, M. A. (2011). A Hormonal Regulatory Module That Provides Flexibility to Tropic Responses. Plant Physiology, 156(4), 1819-1825. doi:10.1104/pp.111.173971 es_ES
dc.description.references Willige, B. C., Isono, E., Richter, R., Zourelidou, M., & Schwechheimer, C. (2011). Gibberellin Regulates PIN-FORMED Abundance and Is Required for Auxin Transport–Dependent Growth and Development in Arabidopsis thaliana. The Plant Cell, 23(6), 2184-2195. doi:10.1105/tpc.111.086355 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem