- -

Long-term implications of feed energy source in different genetic types of reproductive rabbit females. II.Immunologic status

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Long-term implications of feed energy source in different genetic types of reproductive rabbit females. II.Immunologic status

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Penadés, Mariola es_ES
dc.contributor.author Arnau-Bonachera, Alberto es_ES
dc.contributor.author García-Quirós, Ana es_ES
dc.contributor.author Viana, David es_ES
dc.contributor.author Selva, Laura es_ES
dc.contributor.author Corpa, Juan Manuel es_ES
dc.contributor.author Pascual Amorós, Juan José es_ES
dc.date.accessioned 2020-05-22T03:02:40Z
dc.date.available 2020-05-22T03:02:40Z
dc.date.issued 2018-09 es_ES
dc.identifier.issn 1751-7311 es_ES
dc.identifier.uri http://hdl.handle.net/10251/144090
dc.description.abstract [EN] Genetic selection and nutrition management have played a central role in the development of commercial rabbitry industry over the last few decades, being able to affect productive and immunological traits of the animals. However, the implication of different energy sources in animals from diverse genetic lines achieving such evolutionary success remains still unknown. Therefore, in this work, 203 female rabbits housed and bred in the same conditions were used from their first artificial insemination until their fifth weaning. The animals belonged to three different genetic types diverging greatly on breeding goals (H line, hyper-prolific (n=66); LP line, robust (n=67) and R line, selected for growth rate (n=67), and were assigned to two experimental diets, promoting major differences in energy source (cereal starch or animal fat)). The aims of this work were to: (1) characterize and describe blood leucocyte populations of three lines of rabbit does in different physiological stages during their reproductive period: first artificial insemination, first weaning, second parturition and fifth weaning; and (2) study the possible influence of two different experimental diets on the leucocyte populations in peripheral blood. Flow cytometry analyses were performed on blood samples taken from females at each different sampling stade. Lymphocyte populations at both weanings were characterized by significantly lower counts of total, CD5(+) and CD8(+) lymphocytes (-19.8, -21.7 and -44.6%; P<0.05), and higher counts of monocytes and granulocytes (+49.2 and +26.2%; P<0.05) than in the other stages. Females had higher blood counts of lymphocytes B, CD8(+) and CD25(+) and lower counts of CD4(+) at first than at fifth weaning (+55.6, +85.8, +57.5, -14.5%; P<0.05). G/L ratio was higher at both weanings (P<0.05), and CD4(+)/CD8(+) ratio increased progressively from the 1AI to the 5 W (P<0.001). Regarding the effect of genetic type in blood leucocyte counts, LP animals presented the highest counts for total, B, CD5(+) and CD8(+) lymphocytes (+16.7, +31.8, +24.5 and +38.7; P<0.05), but R rabbits showed the highest counts for monocytes and granulocytes (+25.3 and +27.6; P<0.05). The type of diet given during the reproductive life did not affect the leucocyte population counts. These results indicate that there are detectable variations in the leucocyte profile depending on the reproductive stage of the animal (parturition, weaning or none of them). Moreover, foundation for reproductive longevity criteria allows animals to be more capable of adapting to the challenges of the reproductive cycle from an immunological viewpoint. es_ES
dc.description.sponsorship This study was supported by the Interministerial Commission for Science and Technology (CICYT) of the Spanish Government (AGL2014-53405-C2-1-P; AGL2014-53405-C2-2-P). The authors thank Juan Carlos Moreno for his technical support. Grants for Ana Garcia-Quiros from Universidad CEU-Cardenal Herrera, and Mariola Penades and Alberto Arnau from the Ministerio de Educacion, Cultura y Deporte (AP2010-3907 and BES-2012-052345, respectively) are also gratefully acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher Cambridge University Press es_ES
dc.relation.ispartof Animal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Immunological challenge es_ES
dc.subject Genetic type es_ES
dc.subject Flow cytometry es_ES
dc.subject Animal fat es_ES
dc.subject Cereal starch es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title Long-term implications of feed energy source in different genetic types of reproductive rabbit females. II.Immunologic status es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1017/S1751731117003299 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2014-53405-C2-2-P/ES/CARACTERIZACION INMUNOLOGICA Y RESPUESTA INMUNE A RETOS INFECCIOSOS EN CONEJOS SEPARADOS POR 15 AÑOS DE SELECCION POR TASA DE CRECIMIENTO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//AP2010-3907/ES/AP2010-3907/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2012-052345/ES/BES-2012-052345/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2014-53405-C2-1-P/ES/MEJORA GENETICA DEL CONEJO DE CARNE:RESPUESTA A LA SELECCION Y SU EFECTO SOBRE LA REPRODUCCION, ALIMENTACION Y SALUD UTILIZANDO UNA POBLACION CONTROL CRIOCONSERVADA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Penadés, M.; Arnau-Bonachera, A.; García-Quirós, A.; Viana, D.; Selva, L.; Corpa, JM.; Pascual Amorós, JJ. (2018). Long-term implications of feed energy source in different genetic types of reproductive rabbit females. II.Immunologic status. Animal. 12(9):1877-1885. https://doi.org/10.1017/S1751731117003299 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1017/S1751731117003299 es_ES
dc.description.upvformatpinicio 1877 es_ES
dc.description.upvformatpfin 1885 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 9 es_ES
dc.identifier.pmid 29224577 es_ES
dc.relation.pasarela S\355323 es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Cifre, J., Baselga, M., García-Ximénez, F., & Vicente, J. S. (1998). Performance of a hyperprolific rabbit line I. Litter size traits. Journal of Animal Breeding and Genetics, 115(1-6), 131-138. doi:10.1111/j.1439-0388.1998.tb00336.x es_ES
dc.description.references Franceschi, C., Valensin, S., Bonafè, M., Paolisso, G., Yashin, A. ., Monti, D., & De Benedictis, G. (2000). The network and the remodeling theories of aging: historical background and new perspectives. Experimental Gerontology, 35(6-7), 879-896. doi:10.1016/s0531-5565(00)00172-8 es_ES
dc.description.references Al-Murrani, W. K., Al-Rawi, I. K., & Raof, N. M. (2002). Genetic resistance to Salmonella typhimurium in two lines of chickens selected as resistant and sensitive on the basis of heterophil/lymphocyte ratio. British Poultry Science, 43(4), 501-507. doi:10.1080/0007166022000004408 es_ES
dc.description.references Savietto, D., Friggens, N. C., & Pascual, J. (2015). Reproductive robustness differs between generalist and specialist maternal rabbit lines: the role of acquisition and allocation of resources. Genetics Selection Evolution, 47(1), 2. doi:10.1186/s12711-014-0073-5 es_ES
dc.description.references Kilgas, P., Tilgar, V., & Mänd, R. (2006). Hematological Health State Indices Predict Local Survival in a Small Passerine Bird, the Great Tit (Parus major). Physiological and Biochemical Zoology, 79(3), 565-572. doi:10.1086/502817 es_ES
dc.description.references Hulstaert, F., Hannet, I., Deneys, V., Munhyeshuli, V., Reichert, T., De Bruyere, M., & Strauss, K. (1994). Age-Related Changes in Human Blood Lymphocyte Subpopulations. Clinical Immunology and Immunopathology, 70(2), 152-158. doi:10.1006/clin.1994.1023 es_ES
dc.description.references HÕrak, P., Ots, I., & Murumägi, A. (1998). Haematological health state indices of reproducing Great Tits: a response to brood size manipulation. Functional Ecology, 12(5), 750-756. doi:10.1046/j.1365-2435.1998.00244.x es_ES
dc.description.references Sakaguchi, S. (2005). Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nature Immunology, 6(4), 345-352. doi:10.1038/ni1178 es_ES
dc.description.references Kampen, A. H., Olsen, I., Tollersrud, T., Storset, A. K., & Lund, A. (2006). Lymphocyte subpopulations and neutrophil function in calves during the first 6 months of life. Veterinary Immunology and Immunopathology, 113(1-2), 53-63. doi:10.1016/j.vetimm.2006.04.001 es_ES
dc.description.references Blas, C. de, & Mateos, G. G. (s. f.). Feed formulation. Nutrition of the rabbit, 222-232. doi:10.1079/9781845936693.0222 es_ES
dc.description.references Jeklova, E., Leva, L., Knotigova, P., & Faldyna, M. (2009). Age-related changes in selected haematology parameters in rabbits. Research in Veterinary Science, 86(3), 525-528. doi:10.1016/j.rvsc.2008.10.007 es_ES
dc.description.references Arnau-Bonachera, A., Savietto, D., & Pascual, J. J. (2017). Long-term implications of feed energy source in different genetic types of reproductive rabbit females: III. Fitness and productivity. animal, 12(9), 1886-1894. doi:10.1017/s1751731117003305 es_ES
dc.description.references Davis, W. C., & Hamilton, M. J. (2008). Use of flow cytometry to develop and characterize a set of monoclonal antibodies specific for rabbit leukocyte differentiation molecules. Journal of Veterinary Science, 9(1), 51. doi:10.4142/jvs.2008.9.1.51 es_ES
dc.description.references Ferrian, S., Guerrero, I., Blas, E., García-Diego, F. J., Viana, D., Pascual, J. J., & Corpa, J. M. (2012). How selection for reproduction or foundation for longevity could have affected blood lymphocyte populations of rabbit does under conventional and heat stress conditions. Veterinary Immunology and Immunopathology, 150(1-2), 53-60. doi:10.1016/j.vetimm.2012.08.007 es_ES
dc.description.references Pascual, J. J., Savietto, D., Cervera, C., & Baselga, M. (2013). Resources allocation in reproductive rabbit does: a review of feeding and genetic strategies for suitable performance. World Rabbit Science, 21(3). doi:10.4995/wrs.2013.1236 es_ES
dc.description.references Pascual JJ 2010. The role of body condition on new feeding and breeding programmes for reproductive rabbit does. Proceedings of the 22nd Hungarian Conference on Rabbit Production, Kaposvár, Hungary, pp. 11–32. es_ES
dc.description.references Sánchez, J. P., Theilgaard, P., Mínguez, C., & Baselga, M. (2008). Constitution and evaluation of a long-lived productive rabbit line1. Journal of Animal Science, 86(3), 515-525. doi:10.2527/jas.2007-0217 es_ES
dc.description.references Guerrero, I., Ferrian, S., Blas, E., Pascual, J. J., Cano, J. L., & Corpa, J. M. (2011). Evolution of the peripheral blood lymphocyte populations in multiparous rabbit does with two reproductive management rhythms. Veterinary Immunology and Immunopathology, 140(1-2), 75-81. doi:10.1016/j.vetimm.2010.11.017 es_ES
dc.description.references Kotani, M., Yamamura, Y., Tamatani, T., Kitamura, F., & Miyasaka, M. (1993). Generation and characterization of monoclomal antibodies against rabbit CD4, CD5 and CD11a antigens. Journal of Immunological Methods, 157(1-2), 241-252. doi:10.1016/0022-1759(93)90093-m es_ES
dc.description.references Arnau-Bonachera, A., Cervera, C., Blas, E., Larsen, T., Martínez-Paredes, E., Ródenas, L., & Pascual, J. J. (2017). Long-term implications of feed energy source in different genetic types of reproductive rabbit females: I. Resource acquisition and allocation. animal, 12(9), 1867-1876. doi:10.1017/s1751731117003287 es_ES
dc.description.references Chen, X., Du, Y., Lin, X., Qian, Y., Zhou, T., & Huang, Z. (2016). CD4 + CD25 + regulatory T cells in tumor immunity. International Immunopharmacology, 34, 244-249. doi:10.1016/j.intimp.2016.03.009 es_ES
dc.description.references Kotani, M., Yamamura, Y., Tsudo, M., Tamatani, T., Kitamura, F., & Miyasaka, M. (1993). Generation of Monoclonal Antibodies to the Rabbit Interleukin-2 ReceptoraChain (CD25) and Its Distribution in HTLV-1-transformed Rabbit T Cells. Japanese Journal of Cancer Research, 84(7), 770-775. doi:10.1111/j.1349-7006.1993.tb02042.x es_ES
dc.description.references Ayoub, I. A., & Yang, T. J. (1996). Age-dependent changes in peripheral blood lymphocyte subpopulations in cattle: A longitudinal study. Developmental & Comparative Immunology, 20(5), 353-363. doi:10.1016/s0145-305x(96)00024-9 es_ES
dc.description.references Davis, A. K., Maney, D. L., & Maerz, J. C. (2008). The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Functional Ecology, 22(5), 760-772. doi:10.1111/j.1365-2435.2008.01467.x es_ES
dc.description.references Castelo-Branco, C., & Soveral, I. (2013). The immune system and aging: a review. Gynecological Endocrinology, 30(1), 16-22. doi:10.3109/09513590.2013.852531 es_ES
dc.description.references Estany, J., Camacho, J., Baselga, M., & Blasco, A. (1992). Selection response of growth rate in rabbits for meat production. Genetics Selection Evolution, 24(6), 527. doi:10.1186/1297-9686-24-6-527 es_ES
dc.description.references García-Quirós, A., Arnau-Bonachera, A., Penadés, M., Cervera, C., Martínez-Paredes, E., Ródenas, L., … Pascual, J. J. (2014). A robust rabbit line increases leucocyte counts at weaning and reduces mortality by digestive disorder during fattening. Veterinary Immunology and Immunopathology, 161(3-4), 123-131. doi:10.1016/j.vetimm.2014.07.005 es_ES
dc.description.references Jeklova, E., Leva, L., & Faldyna, M. (2007). Lymphoid organ development in rabbits: Major lymphocyte subsets. Developmental & Comparative Immunology, 31(6), 632-644. doi:10.1016/j.dci.2006.10.002 es_ES
dc.description.references Jacobsen, C. N., Aasted, B., Broe, M. K., & Petersen, J. L. (1993). Reactivities of 20 anti-human monoclonal antibodies with leucocytes from ten different animal species. Veterinary Immunology and Immunopathology, 39(4), 461-466. doi:10.1016/0165-2427(93)90075-f es_ES
dc.description.references MacIver, N. J., Jacobs, S. R., Wieman, H. L., Wofford, J. A., Coloff, J. L., & Rathmell, J. C. (2008). Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival. Journal of Leukocyte Biology, 84(4), 949-957. doi:10.1189/jlb.0108024 es_ES
dc.description.references Knap, P. W. (2005). Breeding robust pigs. Australian Journal of Experimental Agriculture, 45(8), 763. doi:10.1071/ea05041 es_ES
dc.description.references Meglia, G. E., Johannisson, A., Agenäs, S., Holtenius, K., & Waller, K. P. (2005). Effects of feeding intensity during the dry period on leukocyte and lymphocyte sub-populations, neutrophil function and health in periparturient dairy cows. The Veterinary Journal, 169(3), 376-384. doi:10.1016/j.tvjl.2004.02.003 es_ES
dc.description.references Nussey, D. H., Watt, K., Pilkington, J. G., Zamoyska, R., & McNeilly, T. N. (2011). Age‐related variation in immunity in a wild mammal population. Aging Cell, 11(1), 178-180. doi:10.1111/j.1474-9726.2011.00771.x es_ES
dc.description.references Plowden, J., Renshaw-Hoelscher, M., Engleman, C., Katz, J., & Sambhara, S. (2004). Innate immunity in aging: impact on macrophage function. Aging Cell, 3(4), 161-167. doi:10.1111/j.1474-9728.2004.00102.x es_ES
dc.description.references Plowden, J., Renshaw-Hoelscher, M., Gangappa, S., Engleman, C., Katz, J. M., & Sambhara, S. (2004). Impaired antigen-induced CD8+ T cell clonal expansion in aging is due to defects in antigen presenting cell function. Cellular Immunology, 229(2), 86-92. doi:10.1016/j.cellimm.2004.07.001 es_ES
dc.description.references Rosell, J. M., & de la Fuente, L. F. (2009). Culling and mortality in breeding rabbits. Preventive Veterinary Medicine, 88(2), 120-127. doi:10.1016/j.prevetmed.2008.08.003 es_ES
dc.description.references Dejaco, C., Duftner, C., Grubeck-Loebenstein, B., & Schirmer, M. (2006). Imbalance of regulatory T cells in human autoimmune diseases. Immunology, 117(3), 289-300. doi:10.1111/j.1365-2567.2005.02317.x es_ES
dc.description.references Wells, M. Y., Decobecq, C. P.-M., Decouvelaere, D. M., Justice, C., & Guittin, P. (1999). Changes in Clinical Pathology Parameters During Gestation in the New Zealand White Rabbit. Toxicologic Pathology, 27(3), 370-379. doi:10.1177/019262339902700315 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem