Mostrar el registro sencillo del ítem
dc.contributor.author | Penadés, Mariola | es_ES |
dc.contributor.author | Arnau-Bonachera, Alberto | es_ES |
dc.contributor.author | García-Quirós, Ana | es_ES |
dc.contributor.author | Viana, David | es_ES |
dc.contributor.author | Selva, Laura | es_ES |
dc.contributor.author | Corpa, Juan Manuel | es_ES |
dc.contributor.author | Pascual Amorós, Juan José | es_ES |
dc.date.accessioned | 2020-05-22T03:02:40Z | |
dc.date.available | 2020-05-22T03:02:40Z | |
dc.date.issued | 2018-09 | es_ES |
dc.identifier.issn | 1751-7311 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/144090 | |
dc.description.abstract | [EN] Genetic selection and nutrition management have played a central role in the development of commercial rabbitry industry over the last few decades, being able to affect productive and immunological traits of the animals. However, the implication of different energy sources in animals from diverse genetic lines achieving such evolutionary success remains still unknown. Therefore, in this work, 203 female rabbits housed and bred in the same conditions were used from their first artificial insemination until their fifth weaning. The animals belonged to three different genetic types diverging greatly on breeding goals (H line, hyper-prolific (n=66); LP line, robust (n=67) and R line, selected for growth rate (n=67), and were assigned to two experimental diets, promoting major differences in energy source (cereal starch or animal fat)). The aims of this work were to: (1) characterize and describe blood leucocyte populations of three lines of rabbit does in different physiological stages during their reproductive period: first artificial insemination, first weaning, second parturition and fifth weaning; and (2) study the possible influence of two different experimental diets on the leucocyte populations in peripheral blood. Flow cytometry analyses were performed on blood samples taken from females at each different sampling stade. Lymphocyte populations at both weanings were characterized by significantly lower counts of total, CD5(+) and CD8(+) lymphocytes (-19.8, -21.7 and -44.6%; P<0.05), and higher counts of monocytes and granulocytes (+49.2 and +26.2%; P<0.05) than in the other stages. Females had higher blood counts of lymphocytes B, CD8(+) and CD25(+) and lower counts of CD4(+) at first than at fifth weaning (+55.6, +85.8, +57.5, -14.5%; P<0.05). G/L ratio was higher at both weanings (P<0.05), and CD4(+)/CD8(+) ratio increased progressively from the 1AI to the 5 W (P<0.001). Regarding the effect of genetic type in blood leucocyte counts, LP animals presented the highest counts for total, B, CD5(+) and CD8(+) lymphocytes (+16.7, +31.8, +24.5 and +38.7; P<0.05), but R rabbits showed the highest counts for monocytes and granulocytes (+25.3 and +27.6; P<0.05). The type of diet given during the reproductive life did not affect the leucocyte population counts. These results indicate that there are detectable variations in the leucocyte profile depending on the reproductive stage of the animal (parturition, weaning or none of them). Moreover, foundation for reproductive longevity criteria allows animals to be more capable of adapting to the challenges of the reproductive cycle from an immunological viewpoint. | es_ES |
dc.description.sponsorship | This study was supported by the Interministerial Commission for Science and Technology (CICYT) of the Spanish Government (AGL2014-53405-C2-1-P; AGL2014-53405-C2-2-P). The authors thank Juan Carlos Moreno for his technical support. Grants for Ana Garcia-Quiros from Universidad CEU-Cardenal Herrera, and Mariola Penades and Alberto Arnau from the Ministerio de Educacion, Cultura y Deporte (AP2010-3907 and BES-2012-052345, respectively) are also gratefully acknowledged. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Cambridge University Press | es_ES |
dc.relation.ispartof | Animal | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Immunological challenge | es_ES |
dc.subject | Genetic type | es_ES |
dc.subject | Flow cytometry | es_ES |
dc.subject | Animal fat | es_ES |
dc.subject | Cereal starch | es_ES |
dc.subject.classification | PRODUCCION ANIMAL | es_ES |
dc.title | Long-term implications of feed energy source in different genetic types of reproductive rabbit females. II.Immunologic status | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1017/S1751731117003299 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2014-53405-C2-2-P/ES/CARACTERIZACION INMUNOLOGICA Y RESPUESTA INMUNE A RETOS INFECCIOSOS EN CONEJOS SEPARADOS POR 15 AÑOS DE SELECCION POR TASA DE CRECIMIENTO/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MECD//AP2010-3907/ES/AP2010-3907/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BES-2012-052345/ES/BES-2012-052345/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2014-53405-C2-1-P/ES/MEJORA GENETICA DEL CONEJO DE CARNE:RESPUESTA A LA SELECCION Y SU EFECTO SOBRE LA REPRODUCCION, ALIMENTACION Y SALUD UTILIZANDO UNA POBLACION CONTROL CRIOCONSERVADA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal | es_ES |
dc.description.bibliographicCitation | Penadés, M.; Arnau-Bonachera, A.; García-Quirós, A.; Viana, D.; Selva, L.; Corpa, JM.; Pascual Amorós, JJ. (2018). Long-term implications of feed energy source in different genetic types of reproductive rabbit females. II.Immunologic status. Animal. 12(9):1877-1885. https://doi.org/10.1017/S1751731117003299 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1017/S1751731117003299 | es_ES |
dc.description.upvformatpinicio | 1877 | es_ES |
dc.description.upvformatpfin | 1885 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 12 | es_ES |
dc.description.issue | 9 | es_ES |
dc.identifier.pmid | 29224577 | es_ES |
dc.relation.pasarela | S\355323 | es_ES |
dc.contributor.funder | Ministerio de Educación, Cultura y Deporte | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Cifre, J., Baselga, M., García-Ximénez, F., & Vicente, J. S. (1998). Performance of a hyperprolific rabbit line I. Litter size traits. Journal of Animal Breeding and Genetics, 115(1-6), 131-138. doi:10.1111/j.1439-0388.1998.tb00336.x | es_ES |
dc.description.references | Franceschi, C., Valensin, S., Bonafè, M., Paolisso, G., Yashin, A. ., Monti, D., & De Benedictis, G. (2000). The network and the remodeling theories of aging: historical background and new perspectives. Experimental Gerontology, 35(6-7), 879-896. doi:10.1016/s0531-5565(00)00172-8 | es_ES |
dc.description.references | Al-Murrani, W. K., Al-Rawi, I. K., & Raof, N. M. (2002). Genetic resistance to Salmonella typhimurium in two lines of chickens selected as resistant and sensitive on the basis of heterophil/lymphocyte ratio. British Poultry Science, 43(4), 501-507. doi:10.1080/0007166022000004408 | es_ES |
dc.description.references | Savietto, D., Friggens, N. C., & Pascual, J. (2015). Reproductive robustness differs between generalist and specialist maternal rabbit lines: the role of acquisition and allocation of resources. Genetics Selection Evolution, 47(1), 2. doi:10.1186/s12711-014-0073-5 | es_ES |
dc.description.references | Kilgas, P., Tilgar, V., & Mänd, R. (2006). Hematological Health State Indices Predict Local Survival in a Small Passerine Bird, the Great Tit (Parus major). Physiological and Biochemical Zoology, 79(3), 565-572. doi:10.1086/502817 | es_ES |
dc.description.references | Hulstaert, F., Hannet, I., Deneys, V., Munhyeshuli, V., Reichert, T., De Bruyere, M., & Strauss, K. (1994). Age-Related Changes in Human Blood Lymphocyte Subpopulations. Clinical Immunology and Immunopathology, 70(2), 152-158. doi:10.1006/clin.1994.1023 | es_ES |
dc.description.references | HÕrak, P., Ots, I., & Murumägi, A. (1998). Haematological health state indices of reproducing Great Tits: a response to brood size manipulation. Functional Ecology, 12(5), 750-756. doi:10.1046/j.1365-2435.1998.00244.x | es_ES |
dc.description.references | Sakaguchi, S. (2005). Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nature Immunology, 6(4), 345-352. doi:10.1038/ni1178 | es_ES |
dc.description.references | Kampen, A. H., Olsen, I., Tollersrud, T., Storset, A. K., & Lund, A. (2006). Lymphocyte subpopulations and neutrophil function in calves during the first 6 months of life. Veterinary Immunology and Immunopathology, 113(1-2), 53-63. doi:10.1016/j.vetimm.2006.04.001 | es_ES |
dc.description.references | Blas, C. de, & Mateos, G. G. (s. f.). Feed formulation. Nutrition of the rabbit, 222-232. doi:10.1079/9781845936693.0222 | es_ES |
dc.description.references | Jeklova, E., Leva, L., Knotigova, P., & Faldyna, M. (2009). Age-related changes in selected haematology parameters in rabbits. Research in Veterinary Science, 86(3), 525-528. doi:10.1016/j.rvsc.2008.10.007 | es_ES |
dc.description.references | Arnau-Bonachera, A., Savietto, D., & Pascual, J. J. (2017). Long-term implications of feed energy source in different genetic types of reproductive rabbit females: III. Fitness and productivity. animal, 12(9), 1886-1894. doi:10.1017/s1751731117003305 | es_ES |
dc.description.references | Davis, W. C., & Hamilton, M. J. (2008). Use of flow cytometry to develop and characterize a set of monoclonal antibodies specific for rabbit leukocyte differentiation molecules. Journal of Veterinary Science, 9(1), 51. doi:10.4142/jvs.2008.9.1.51 | es_ES |
dc.description.references | Ferrian, S., Guerrero, I., Blas, E., García-Diego, F. J., Viana, D., Pascual, J. J., & Corpa, J. M. (2012). How selection for reproduction or foundation for longevity could have affected blood lymphocyte populations of rabbit does under conventional and heat stress conditions. Veterinary Immunology and Immunopathology, 150(1-2), 53-60. doi:10.1016/j.vetimm.2012.08.007 | es_ES |
dc.description.references | Pascual, J. J., Savietto, D., Cervera, C., & Baselga, M. (2013). Resources allocation in reproductive rabbit does: a review of feeding and genetic strategies for suitable performance. World Rabbit Science, 21(3). doi:10.4995/wrs.2013.1236 | es_ES |
dc.description.references | Pascual JJ 2010. The role of body condition on new feeding and breeding programmes for reproductive rabbit does. Proceedings of the 22nd Hungarian Conference on Rabbit Production, Kaposvár, Hungary, pp. 11–32. | es_ES |
dc.description.references | Sánchez, J. P., Theilgaard, P., Mínguez, C., & Baselga, M. (2008). Constitution and evaluation of a long-lived productive rabbit line1. Journal of Animal Science, 86(3), 515-525. doi:10.2527/jas.2007-0217 | es_ES |
dc.description.references | Guerrero, I., Ferrian, S., Blas, E., Pascual, J. J., Cano, J. L., & Corpa, J. M. (2011). Evolution of the peripheral blood lymphocyte populations in multiparous rabbit does with two reproductive management rhythms. Veterinary Immunology and Immunopathology, 140(1-2), 75-81. doi:10.1016/j.vetimm.2010.11.017 | es_ES |
dc.description.references | Kotani, M., Yamamura, Y., Tamatani, T., Kitamura, F., & Miyasaka, M. (1993). Generation and characterization of monoclomal antibodies against rabbit CD4, CD5 and CD11a antigens. Journal of Immunological Methods, 157(1-2), 241-252. doi:10.1016/0022-1759(93)90093-m | es_ES |
dc.description.references | Arnau-Bonachera, A., Cervera, C., Blas, E., Larsen, T., Martínez-Paredes, E., Ródenas, L., & Pascual, J. J. (2017). Long-term implications of feed energy source in different genetic types of reproductive rabbit females: I. Resource acquisition and allocation. animal, 12(9), 1867-1876. doi:10.1017/s1751731117003287 | es_ES |
dc.description.references | Chen, X., Du, Y., Lin, X., Qian, Y., Zhou, T., & Huang, Z. (2016). CD4 + CD25 + regulatory T cells in tumor immunity. International Immunopharmacology, 34, 244-249. doi:10.1016/j.intimp.2016.03.009 | es_ES |
dc.description.references | Kotani, M., Yamamura, Y., Tsudo, M., Tamatani, T., Kitamura, F., & Miyasaka, M. (1993). Generation of Monoclonal Antibodies to the Rabbit Interleukin-2 ReceptoraChain (CD25) and Its Distribution in HTLV-1-transformed Rabbit T Cells. Japanese Journal of Cancer Research, 84(7), 770-775. doi:10.1111/j.1349-7006.1993.tb02042.x | es_ES |
dc.description.references | Ayoub, I. A., & Yang, T. J. (1996). Age-dependent changes in peripheral blood lymphocyte subpopulations in cattle: A longitudinal study. Developmental & Comparative Immunology, 20(5), 353-363. doi:10.1016/s0145-305x(96)00024-9 | es_ES |
dc.description.references | Davis, A. K., Maney, D. L., & Maerz, J. C. (2008). The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Functional Ecology, 22(5), 760-772. doi:10.1111/j.1365-2435.2008.01467.x | es_ES |
dc.description.references | Castelo-Branco, C., & Soveral, I. (2013). The immune system and aging: a review. Gynecological Endocrinology, 30(1), 16-22. doi:10.3109/09513590.2013.852531 | es_ES |
dc.description.references | Estany, J., Camacho, J., Baselga, M., & Blasco, A. (1992). Selection response of growth rate in rabbits for meat production. Genetics Selection Evolution, 24(6), 527. doi:10.1186/1297-9686-24-6-527 | es_ES |
dc.description.references | García-Quirós, A., Arnau-Bonachera, A., Penadés, M., Cervera, C., Martínez-Paredes, E., Ródenas, L., … Pascual, J. J. (2014). A robust rabbit line increases leucocyte counts at weaning and reduces mortality by digestive disorder during fattening. Veterinary Immunology and Immunopathology, 161(3-4), 123-131. doi:10.1016/j.vetimm.2014.07.005 | es_ES |
dc.description.references | Jeklova, E., Leva, L., & Faldyna, M. (2007). Lymphoid organ development in rabbits: Major lymphocyte subsets. Developmental & Comparative Immunology, 31(6), 632-644. doi:10.1016/j.dci.2006.10.002 | es_ES |
dc.description.references | Jacobsen, C. N., Aasted, B., Broe, M. K., & Petersen, J. L. (1993). Reactivities of 20 anti-human monoclonal antibodies with leucocytes from ten different animal species. Veterinary Immunology and Immunopathology, 39(4), 461-466. doi:10.1016/0165-2427(93)90075-f | es_ES |
dc.description.references | MacIver, N. J., Jacobs, S. R., Wieman, H. L., Wofford, J. A., Coloff, J. L., & Rathmell, J. C. (2008). Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival. Journal of Leukocyte Biology, 84(4), 949-957. doi:10.1189/jlb.0108024 | es_ES |
dc.description.references | Knap, P. W. (2005). Breeding robust pigs. Australian Journal of Experimental Agriculture, 45(8), 763. doi:10.1071/ea05041 | es_ES |
dc.description.references | Meglia, G. E., Johannisson, A., Agenäs, S., Holtenius, K., & Waller, K. P. (2005). Effects of feeding intensity during the dry period on leukocyte and lymphocyte sub-populations, neutrophil function and health in periparturient dairy cows. The Veterinary Journal, 169(3), 376-384. doi:10.1016/j.tvjl.2004.02.003 | es_ES |
dc.description.references | Nussey, D. H., Watt, K., Pilkington, J. G., Zamoyska, R., & McNeilly, T. N. (2011). Age‐related variation in immunity in a wild mammal population. Aging Cell, 11(1), 178-180. doi:10.1111/j.1474-9726.2011.00771.x | es_ES |
dc.description.references | Plowden, J., Renshaw-Hoelscher, M., Engleman, C., Katz, J., & Sambhara, S. (2004). Innate immunity in aging: impact on macrophage function. Aging Cell, 3(4), 161-167. doi:10.1111/j.1474-9728.2004.00102.x | es_ES |
dc.description.references | Plowden, J., Renshaw-Hoelscher, M., Gangappa, S., Engleman, C., Katz, J. M., & Sambhara, S. (2004). Impaired antigen-induced CD8+ T cell clonal expansion in aging is due to defects in antigen presenting cell function. Cellular Immunology, 229(2), 86-92. doi:10.1016/j.cellimm.2004.07.001 | es_ES |
dc.description.references | Rosell, J. M., & de la Fuente, L. F. (2009). Culling and mortality in breeding rabbits. Preventive Veterinary Medicine, 88(2), 120-127. doi:10.1016/j.prevetmed.2008.08.003 | es_ES |
dc.description.references | Dejaco, C., Duftner, C., Grubeck-Loebenstein, B., & Schirmer, M. (2006). Imbalance of regulatory T cells in human autoimmune diseases. Immunology, 117(3), 289-300. doi:10.1111/j.1365-2567.2005.02317.x | es_ES |
dc.description.references | Wells, M. Y., Decobecq, C. P.-M., Decouvelaere, D. M., Justice, C., & Guittin, P. (1999). Changes in Clinical Pathology Parameters During Gestation in the New Zealand White Rabbit. Toxicologic Pathology, 27(3), 370-379. doi:10.1177/019262339902700315 | es_ES |