Cifre, J., Baselga, M., García-Ximénez, F., & Vicente, J. S. (1998). Performance of a hyperprolific rabbit line I. Litter size traits. Journal of Animal Breeding and Genetics, 115(1-6), 131-138. doi:10.1111/j.1439-0388.1998.tb00336.x
Franceschi, C., Valensin, S., Bonafè, M., Paolisso, G., Yashin, A. ., Monti, D., & De Benedictis, G. (2000). The network and the remodeling theories of aging: historical background and new perspectives. Experimental Gerontology, 35(6-7), 879-896. doi:10.1016/s0531-5565(00)00172-8
Al-Murrani, W. K., Al-Rawi, I. K., & Raof, N. M. (2002). Genetic resistance to Salmonella typhimurium in two lines of chickens selected as resistant and sensitive on the basis of heterophil/lymphocyte ratio. British Poultry Science, 43(4), 501-507. doi:10.1080/0007166022000004408
[+]
Cifre, J., Baselga, M., García-Ximénez, F., & Vicente, J. S. (1998). Performance of a hyperprolific rabbit line I. Litter size traits. Journal of Animal Breeding and Genetics, 115(1-6), 131-138. doi:10.1111/j.1439-0388.1998.tb00336.x
Franceschi, C., Valensin, S., Bonafè, M., Paolisso, G., Yashin, A. ., Monti, D., & De Benedictis, G. (2000). The network and the remodeling theories of aging: historical background and new perspectives. Experimental Gerontology, 35(6-7), 879-896. doi:10.1016/s0531-5565(00)00172-8
Al-Murrani, W. K., Al-Rawi, I. K., & Raof, N. M. (2002). Genetic resistance to Salmonella typhimurium in two lines of chickens selected as resistant and sensitive on the basis of heterophil/lymphocyte ratio. British Poultry Science, 43(4), 501-507. doi:10.1080/0007166022000004408
Savietto, D., Friggens, N. C., & Pascual, J. (2015). Reproductive robustness differs between generalist and specialist maternal rabbit lines: the role of acquisition and allocation of resources. Genetics Selection Evolution, 47(1), 2. doi:10.1186/s12711-014-0073-5
Kilgas, P., Tilgar, V., & Mänd, R. (2006). Hematological Health State Indices Predict Local Survival in a Small Passerine Bird, the Great Tit (Parus major). Physiological and Biochemical Zoology, 79(3), 565-572. doi:10.1086/502817
Hulstaert, F., Hannet, I., Deneys, V., Munhyeshuli, V., Reichert, T., De Bruyere, M., & Strauss, K. (1994). Age-Related Changes in Human Blood Lymphocyte Subpopulations. Clinical Immunology and Immunopathology, 70(2), 152-158. doi:10.1006/clin.1994.1023
HÕrak, P., Ots, I., & Murumägi, A. (1998). Haematological health state indices of reproducing Great Tits: a response to brood size manipulation. Functional Ecology, 12(5), 750-756. doi:10.1046/j.1365-2435.1998.00244.x
Sakaguchi, S. (2005). Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nature Immunology, 6(4), 345-352. doi:10.1038/ni1178
Kampen, A. H., Olsen, I., Tollersrud, T., Storset, A. K., & Lund, A. (2006). Lymphocyte subpopulations and neutrophil function in calves during the first 6 months of life. Veterinary Immunology and Immunopathology, 113(1-2), 53-63. doi:10.1016/j.vetimm.2006.04.001
Blas, C. de, & Mateos, G. G. (s. f.). Feed formulation. Nutrition of the rabbit, 222-232. doi:10.1079/9781845936693.0222
Jeklova, E., Leva, L., Knotigova, P., & Faldyna, M. (2009). Age-related changes in selected haematology parameters in rabbits. Research in Veterinary Science, 86(3), 525-528. doi:10.1016/j.rvsc.2008.10.007
Arnau-Bonachera, A., Savietto, D., & Pascual, J. J. (2017). Long-term implications of feed energy source in different genetic types of reproductive rabbit females: III. Fitness and productivity. animal, 12(9), 1886-1894. doi:10.1017/s1751731117003305
Davis, W. C., & Hamilton, M. J. (2008). Use of flow cytometry to develop and characterize a set of monoclonal antibodies specific for rabbit leukocyte differentiation molecules. Journal of Veterinary Science, 9(1), 51. doi:10.4142/jvs.2008.9.1.51
Ferrian, S., Guerrero, I., Blas, E., García-Diego, F. J., Viana, D., Pascual, J. J., & Corpa, J. M. (2012). How selection for reproduction or foundation for longevity could have affected blood lymphocyte populations of rabbit does under conventional and heat stress conditions. Veterinary Immunology and Immunopathology, 150(1-2), 53-60. doi:10.1016/j.vetimm.2012.08.007
Pascual, J. J., Savietto, D., Cervera, C., & Baselga, M. (2013). Resources allocation in reproductive rabbit does: a review of feeding and genetic strategies for suitable performance. World Rabbit Science, 21(3). doi:10.4995/wrs.2013.1236
Pascual JJ 2010. The role of body condition on new feeding and breeding programmes for reproductive rabbit does. Proceedings of the 22nd Hungarian Conference on Rabbit Production, Kaposvár, Hungary, pp. 11–32.
Sánchez, J. P., Theilgaard, P., Mínguez, C., & Baselga, M. (2008). Constitution and evaluation of a long-lived productive rabbit line1. Journal of Animal Science, 86(3), 515-525. doi:10.2527/jas.2007-0217
Guerrero, I., Ferrian, S., Blas, E., Pascual, J. J., Cano, J. L., & Corpa, J. M. (2011). Evolution of the peripheral blood lymphocyte populations in multiparous rabbit does with two reproductive management rhythms. Veterinary Immunology and Immunopathology, 140(1-2), 75-81. doi:10.1016/j.vetimm.2010.11.017
Kotani, M., Yamamura, Y., Tamatani, T., Kitamura, F., & Miyasaka, M. (1993). Generation and characterization of monoclomal antibodies against rabbit CD4, CD5 and CD11a antigens. Journal of Immunological Methods, 157(1-2), 241-252. doi:10.1016/0022-1759(93)90093-m
Arnau-Bonachera, A., Cervera, C., Blas, E., Larsen, T., Martínez-Paredes, E., Ródenas, L., & Pascual, J. J. (2017). Long-term implications of feed energy source in different genetic types of reproductive rabbit females: I. Resource acquisition and allocation. animal, 12(9), 1867-1876. doi:10.1017/s1751731117003287
Chen, X., Du, Y., Lin, X., Qian, Y., Zhou, T., & Huang, Z. (2016). CD4 + CD25 + regulatory T cells in tumor immunity. International Immunopharmacology, 34, 244-249. doi:10.1016/j.intimp.2016.03.009
Kotani, M., Yamamura, Y., Tsudo, M., Tamatani, T., Kitamura, F., & Miyasaka, M. (1993). Generation of Monoclonal Antibodies to the Rabbit Interleukin-2 ReceptoraChain (CD25) and Its Distribution in HTLV-1-transformed Rabbit T Cells. Japanese Journal of Cancer Research, 84(7), 770-775. doi:10.1111/j.1349-7006.1993.tb02042.x
Ayoub, I. A., & Yang, T. J. (1996). Age-dependent changes in peripheral blood lymphocyte subpopulations in cattle: A longitudinal study. Developmental & Comparative Immunology, 20(5), 353-363. doi:10.1016/s0145-305x(96)00024-9
Davis, A. K., Maney, D. L., & Maerz, J. C. (2008). The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Functional Ecology, 22(5), 760-772. doi:10.1111/j.1365-2435.2008.01467.x
Castelo-Branco, C., & Soveral, I. (2013). The immune system and aging: a review. Gynecological Endocrinology, 30(1), 16-22. doi:10.3109/09513590.2013.852531
Estany, J., Camacho, J., Baselga, M., & Blasco, A. (1992). Selection response of growth rate in rabbits for meat production. Genetics Selection Evolution, 24(6), 527. doi:10.1186/1297-9686-24-6-527
García-Quirós, A., Arnau-Bonachera, A., Penadés, M., Cervera, C., Martínez-Paredes, E., Ródenas, L., … Pascual, J. J. (2014). A robust rabbit line increases leucocyte counts at weaning and reduces mortality by digestive disorder during fattening. Veterinary Immunology and Immunopathology, 161(3-4), 123-131. doi:10.1016/j.vetimm.2014.07.005
Jeklova, E., Leva, L., & Faldyna, M. (2007). Lymphoid organ development in rabbits: Major lymphocyte subsets. Developmental & Comparative Immunology, 31(6), 632-644. doi:10.1016/j.dci.2006.10.002
Jacobsen, C. N., Aasted, B., Broe, M. K., & Petersen, J. L. (1993). Reactivities of 20 anti-human monoclonal antibodies with leucocytes from ten different animal species. Veterinary Immunology and Immunopathology, 39(4), 461-466. doi:10.1016/0165-2427(93)90075-f
MacIver, N. J., Jacobs, S. R., Wieman, H. L., Wofford, J. A., Coloff, J. L., & Rathmell, J. C. (2008). Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival. Journal of Leukocyte Biology, 84(4), 949-957. doi:10.1189/jlb.0108024
Knap, P. W. (2005). Breeding robust pigs. Australian Journal of Experimental Agriculture, 45(8), 763. doi:10.1071/ea05041
Meglia, G. E., Johannisson, A., Agenäs, S., Holtenius, K., & Waller, K. P. (2005). Effects of feeding intensity during the dry period on leukocyte and lymphocyte sub-populations, neutrophil function and health in periparturient dairy cows. The Veterinary Journal, 169(3), 376-384. doi:10.1016/j.tvjl.2004.02.003
Nussey, D. H., Watt, K., Pilkington, J. G., Zamoyska, R., & McNeilly, T. N. (2011). Age‐related variation in immunity in a wild mammal population. Aging Cell, 11(1), 178-180. doi:10.1111/j.1474-9726.2011.00771.x
Plowden, J., Renshaw-Hoelscher, M., Engleman, C., Katz, J., & Sambhara, S. (2004). Innate immunity in aging: impact on macrophage function. Aging Cell, 3(4), 161-167. doi:10.1111/j.1474-9728.2004.00102.x
Plowden, J., Renshaw-Hoelscher, M., Gangappa, S., Engleman, C., Katz, J. M., & Sambhara, S. (2004). Impaired antigen-induced CD8+ T cell clonal expansion in aging is due to defects in antigen presenting cell function. Cellular Immunology, 229(2), 86-92. doi:10.1016/j.cellimm.2004.07.001
Rosell, J. M., & de la Fuente, L. F. (2009). Culling and mortality in breeding rabbits. Preventive Veterinary Medicine, 88(2), 120-127. doi:10.1016/j.prevetmed.2008.08.003
Dejaco, C., Duftner, C., Grubeck-Loebenstein, B., & Schirmer, M. (2006). Imbalance of regulatory T cells in human autoimmune diseases. Immunology, 117(3), 289-300. doi:10.1111/j.1365-2567.2005.02317.x
Wells, M. Y., Decobecq, C. P.-M., Decouvelaere, D. M., Justice, C., & Guittin, P. (1999). Changes in Clinical Pathology Parameters During Gestation in the New Zealand White Rabbit. Toxicologic Pathology, 27(3), 370-379. doi:10.1177/019262339902700315
[-]