- -

Parsimonious Modeling of Snow Accumulation and Snowmelt Processes in High Mountain Basins

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Parsimonious Modeling of Snow Accumulation and Snowmelt Processes in High Mountain Basins

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Orozco Medina, Ismael es_ES
dc.contributor.author Francés, F. es_ES
dc.contributor.author Mora, Jesús es_ES
dc.date.accessioned 2020-05-22T03:03:00Z
dc.date.available 2020-05-22T03:03:00Z
dc.date.issued 2019-06-20 es_ES
dc.identifier.issn 2073-4441 es_ES
dc.identifier.uri http://hdl.handle.net/10251/144101
dc.description.abstract [EN] The success of hydrological modeling of a high mountain basin depends in most case on the accurate quantification of the snowmelt. However, mathematically modeling snowmelt is not a simple task due to, on one hand, the high number of variables that can be relevant and can change significantly in space and, in the other hand, the low availability of most of them in practical engineering. Therefore, this research proposes to modify the original equation of the classical degree-day model to introduce the spatial and temporal variability of the degree-day factor. To evaluate the effects of the variability in the hydrological modeling and the snowmelt modeling at the cell and hillslope scale. We propose to introduce the spatial and temporal variability of the degree-day factor using maps of radiation indices. These maps consider the position of the sun according to the time of year, solar radiation, insolation, topography and shaded-relief topography. Our priority has been to keep the parsimony of the snowmelt model that can be implemented in high mountain basins with limited observed input. The snowmelt model was included as a new module in the TETIS distributed hydrological model. The results show significant improvements in hydrological modeling in the spring period when the snowmelt is more important. At cell and hillslope scale errors are diminished in the snowpack, improving the representation of the flows and storages that intervene in high mountain basins. es_ES
dc.description.sponsorship This study was supported by the Universidad de Guanajuato, Spanish National Parks Administration through the ACOPLA project (OAPN 011/2008), the Spanish Ministry of Science and Innovation through the projects ECO-TETIS (CGL2011-28776-C02-01), TETISMED (CGL2014-58127-C3-3-R) and TETISCHANGE (RTI2018-093717-B-I00). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Water es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Distributed degree-day snowmelt model es_ES
dc.subject Parsimonious hydrological modeling es_ES
dc.subject TETIS model es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Parsimonious Modeling of Snow Accumulation and Snowmelt Processes in High Mountain Basins es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/w11061288 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/OAPN//011%2F2008/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//CGL2011-28776-C02-01/ES/MODELACION ECOHIDROLOGICA DISTRIBUIDA A ESCALA DE CUENCA PARA BOSQUES EN CLIMAS SEMIARIDOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CGL2014-58127-C3-3-R/ES/MEJORAS BIOGEOQUIMICAS EN EL MODELO TETIS Y SU EXPLOTACION EN EL ANALISIS DEL IMPACTO DEL CAMBIO GLOBAL EN LOS CICLOS DEL AGUA, CALIDAD Y SEDIMENTOS EN CUENCAS MEDITERRANEAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-093717-B-I00/ES/MEJORAS DEL CONOCIMIENTO Y DE LAS CAPACIDADES DE MODELIZACION PARA LA PROGNOSIS DE LOS EFECTOS DEL CAMBIO GLOBAL EN UNA CUENCA HIDROLOGICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Orozco Medina, I.; Francés, F.; Mora, J. (2019). Parsimonious Modeling of Snow Accumulation and Snowmelt Processes in High Mountain Basins. Water. 11(6):1-19. https://doi.org/10.3390/w11061288 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/w11061288 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\410656 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Universidad de Guanajuato es_ES
dc.contributor.funder Organismo Autónomo de Parques Nacionales es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Riboust, P., Thirel, G., Moine, N. L., & Ribstein, P. (2019). Revisiting a Simple Degree-Day Model for Integrating Satellite Data: Implementation of Swe-Sca Hystereses. Journal of Hydrology and Hydromechanics, 67(1), 70-81. doi:10.2478/johh-2018-0004 es_ES
dc.description.references Beniston, M., Farinotti, D., Stoffel, M., Andreassen, L. M., Coppola, E., Eckert, N., … Vincent, C. (2018). The European mountain cryosphere: a review of its current state, trends, and future challenges. The Cryosphere, 12(2), 759-794. doi:10.5194/tc-12-759-2018 es_ES
dc.description.references Bernsteinová, J., Bässler, C., Zimmermann, L., Langhammer, J., & Beudert, B. (2015). Changes in runoff in two neighbouring catchments in the Bohemian Forest related to climate and land cover changes. Journal of Hydrology and Hydromechanics, 63(4), 342-352. doi:10.1515/johh-2015-0037 es_ES
dc.description.references Mateo-Lázaro, J., Castillo-Mateo, J., Sánchez-Navarro, J., Fuertes-Rodríguez, V., García-Gil, A., & Edo-Romero, V. (2019). Assessment of the Role of Snowmelt in a Flood Event in a Gauged Catchment. Water, 11(3), 506. doi:10.3390/w11030506 es_ES
dc.description.references Vormoor, K., Lawrence, D., Heistermann, M., & Bronstert, A. (2015). Climate change impacts on the seasonality and generation processes of floods – projections and uncertainties for catchments with mixed snowmelt/rainfall regimes. Hydrology and Earth System Sciences, 19(2), 913-931. doi:10.5194/hess-19-913-2015 es_ES
dc.description.references Kling, H., Fürst, J., & Nachtnebel, H. P. (2006). Seasonal, spatially distributed modelling of accumulation and melting of snow for computing runoff in a long-term, large-basin water balance model. Hydrological Processes, 20(10), 2141-2156. doi:10.1002/hyp.6203 es_ES
dc.description.references Verdhen, A., Chahar, B. R., & Sharma, O. P. (2014). Springtime Snowmelt and Streamflow Predictions in the Himalayan Mountains. Journal of Hydrologic Engineering, 19(7), 1452-1461. doi:10.1061/(asce)he.1943-5584.0000816 es_ES
dc.description.references Dudley, R. W., Hodgkins, G. A., McHale, M. R., Kolian, M. J., & Renard, B. (2017). Trends in snowmelt-related streamflow timing in the conterminous United States. Journal of Hydrology, 547, 208-221. doi:10.1016/j.jhydrol.2017.01.051 es_ES
dc.description.references Penna, D., van Meerveld, H. J., Zuecco, G., Dalla Fontana, G., & Borga, M. (2016). Hydrological response of an Alpine catchment to rainfall and snowmelt events. Journal of Hydrology, 537, 382-397. doi:10.1016/j.jhydrol.2016.03.040 es_ES
dc.description.references Vormoor, K., Lawrence, D., Schlichting, L., Wilson, D., & Wong, W. K. (2016). Evidence for changes in the magnitude and frequency of observed rainfall vs. snowmelt driven floods in Norway. Journal of Hydrology, 538, 33-48. doi:10.1016/j.jhydrol.2016.03.066 es_ES
dc.description.references Yilmaz, A. G., Imteaz, M. A., & Ogwuda, O. (2012). Accuracy of HEC-HMS and LBRM Models in Simulating Snow Runoffs in Upper Euphrates Basin. Journal of Hydrologic Engineering, 17(2), 342-347. doi:10.1061/(asce)he.1943-5584.0000442 es_ES
dc.description.references Costa, D., Pomeroy, J., & Wheater, H. (2018). A numerical model for the simulation of snowpack solute dynamics to capture runoff ionic pulses during snowmelt: The PULSE model. Advances in Water Resources, 122, 37-48. doi:10.1016/j.advwatres.2018.09.008 es_ES
dc.description.references Fuka, D. R., Easton, Z. M., Brooks, E. S., Boll, J., Steenhuis, T. S., & Walter, M. T. (2012). A Simple Process-Based Snowmelt Routine to Model Spatially Distributed Snow Depth and Snowmelt in the SWAT Model1. JAWRA Journal of the American Water Resources Association, 48(6), 1151-1161. doi:10.1111/j.1752-1688.2012.00680.x es_ES
dc.description.references Schilling, O. S., Park, Y.-J., Therrien, R., & Nagare, R. M. (2018). Integrated Surface and Subsurface Hydrological Modeling with Snowmelt and Pore Water Freeze-Thaw. Groundwater, 57(1), 63-74. doi:10.1111/gwat.12841 es_ES
dc.description.references Semádeni-Davies, A. F. (2000). Representation of Snow in Urban Drainage Models. Journal of Hydrologic Engineering, 5(4), 363-370. doi:10.1061/(asce)1084-0699(2000)5:4(363) es_ES
dc.description.references Žaknić-Ćatović, A., Howard, K. W. F., & Ćatović, Z. (2017). Modification of the degree-day formula for diurnal meltwater generation and refreezing. Theoretical and Applied Climatology, 131(3-4), 1157-1171. doi:10.1007/s00704-017-2034-8 es_ES
dc.description.references Hock, R. (1999). A distributed temperature-index ice- and snowmelt model including potential direct solar radiation. Journal of Glaciology, 45(149), 101-111. doi:10.3189/s0022143000003087 es_ES
dc.description.references Kustas, W. P., Rango, A., & Uijlenhoet, R. (1994). A simple energy budget algorithm for the snowmelt runoff model. Water Resources Research, 30(5), 1515-1527. doi:10.1029/94wr00152 es_ES
dc.description.references Braithwaite, R. J. (1995). Positive degree-day factors for ablation on the Greenland ice sheet studied by energy-balance modelling. Journal of Glaciology, 41(137), 153-160. doi:10.1017/s0022143000017846 es_ES
dc.description.references Cazorzi, F., & Dalla Fontana, G. (1996). Snowmelt modelling by combining air temperature and a distributed radiation index. Journal of Hydrology, 181(1-4), 169-187. doi:10.1016/0022-1694(95)02913-3 es_ES
dc.description.references Hock, R. (2003). Temperature index melt modelling in mountain areas. Journal of Hydrology, 282(1-4), 104-115. doi:10.1016/s0022-1694(03)00257-9 es_ES
dc.description.references Francés, F., Vélez, J. I., & Vélez, J. J. (2007). Split-parameter structure for the automatic calibration of distributed hydrological models. Journal of Hydrology, 332(1-2), 226-240. doi:10.1016/j.jhydrol.2006.06.032 es_ES
dc.description.references Buendia, C., Bussi, G., Tuset, J., Vericat, D., Sabater, S., Palau, A., & Batalla, R. J. (2016). Effects of afforestation on runoff and sediment load in an upland Mediterranean catchment. Science of The Total Environment, 540, 144-157. doi:10.1016/j.scitotenv.2015.07.005 es_ES
dc.description.references Rogelis, M. C., Werner, M., Obregón, N., & Wright, N. (2016). Hydrological model assessment for flood early warning in a tropical high mountain basin. doi:10.5194/hess-2016-30 es_ES
dc.description.references Ruiz-Villanueva, V., Stoffel, M., Bussi, G., Francés, F., & Bréthaut, C. (2014). Climate change impacts on discharges of the Rhone River in Lyon by the end of the twenty-first century: model results and implications. Regional Environmental Change, 15(3), 505-515. doi:10.1007/s10113-014-0707-8 es_ES
dc.description.references Orozco, I., Ramírez, A. I., & Francés, F. (2018). Modelación de los impactos del Cambio Climático sobre los flujos y almacenamientos en una cuenca de alta montaña. Ingeniería del agua, 22(3), 125. doi:10.4995/ia.2018.8931 es_ES
dc.description.references McGrane, S. J., Hutchins, M. G., Miller, J. D., Bussi, G., Kjeldsen, T. R., & Loewenthal, M. (2017). During a winter of storms in a small UK catchment, hydrology and water quality responses follow a clear rural-urban gradient. Journal of Hydrology, 545, 463-477. doi:10.1016/j.jhydrol.2016.12.037 es_ES
dc.description.references Li, Z., & Fang, H. (2017). Modeling the impact of climate change on watershed discharge and sediment yield in the black soil region, northeastern China. Geomorphology, 293, 255-271. doi:10.1016/j.geomorph.2017.06.005 es_ES
dc.description.references Smith, M., Koren, V., Zhang, Z., Moreda, F., Cui, Z., Cosgrove, B., … Staggs, S. (2013). The distributed model intercomparison project – Phase 2: Experiment design and summary results of the western basin experiments. Journal of Hydrology, 507, 300-329. doi:10.1016/j.jhydrol.2013.08.040 es_ES
dc.description.references Simpson, J. J., Dettinger, M. D., Gehrke, F., McIntire, T. J., & Hufford, G. L. (2004). Hydrologic Scales, Cloud Variability, Remote Sensing, and Models: Implications for Forecasting Snowmelt and Streamflow. Weather and Forecasting, 19(2), 251-276. doi:10.1175/1520-0434(2004)019<0251:hscvrs>2.0.co;2 es_ES
dc.description.references Rango, A., & Martinec, J. (1995). REVISITING THE DEGREE-DAY METHOD FOR SNOWMELT COMPUTATIONS. Journal of the American Water Resources Association, 31(4), 657-669. doi:10.1111/j.1752-1688.1995.tb03392.x es_ES
dc.description.references Garen, D. C., & Marks, D. (2005). Spatially distributed energy balance snowmelt modelling in a mountainous river basin: estimation of meteorological inputs and verification of model results. Journal of Hydrology, 315(1-4), 126-153. doi:10.1016/j.jhydrol.2005.03.026 es_ES
dc.description.references Kane, D. L., Gieck, R. E., & Hinzman, L. D. (1997). Snowmelt Modeling at Small Alaskan Arctic Watershed. Journal of Hydrologic Engineering, 2(4), 204-210. doi:10.1061/(asce)1084-0699(1997)2:4(204) es_ES
dc.description.references Granberg, G., Grip, H., Löfvenius, M. O., Sundh, I., Svensson, B. H., & Nilsson, M. (1999). A simple model for simulation of water content, soil frost, and soil temperatures in boreal mixed mires. Water Resources Research, 35(12), 3771-3782. doi:10.1029/1999wr900216 es_ES
dc.description.references Viviroli, D., Zappa, M., Gurtz, J., & Weingartner, R. (2009). An introduction to the hydrological modelling system PREVAH and its pre- and post-processing-tools. Environmental Modelling & Software, 24(10), 1209-1222. doi:10.1016/j.envsoft.2009.04.001 es_ES
dc.description.references Smith, T. J., & Marshall, L. A. (2010). Exploring uncertainty and model predictive performance concepts via a modular snowmelt-runoff modeling framework. Environmental Modelling & Software, 25(6), 691-701. doi:10.1016/j.envsoft.2009.11.010 es_ES
dc.description.references Ohmura, A., Kasser, P., & Funk, M. (1992). Climate at the Equilibrium Line of Glaciers. Journal of Glaciology, 38(130), 397-411. doi:10.1017/s0022143000002276 es_ES
dc.description.references Fu, P., & Rich, P. M. (2002). A geometric solar radiation model with applications in agriculture and forestry. Computers and Electronics in Agriculture, 37(1-3), 25-35. doi:10.1016/s0168-1699(02)00115-1 es_ES
dc.description.references Duan, Q., Sorooshian, S., & Gupta, V. (1992). Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resources Research, 28(4), 1015-1031. doi:10.1029/91wr02985 es_ES
dc.description.references Duan, Q., Sorooshian, S., & Gupta, V. K. (1994). Optimal use of the SCE-UA global optimization method for calibrating watershed models. Journal of Hydrology, 158(3-4), 265-284. doi:10.1016/0022-1694(94)90057-4 es_ES
dc.description.references K. Ajami, N., Gupta, H., Wagener, T., & Sorooshian, S. (2004). Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system. Journal of Hydrology, 298(1-4), 112-135. doi:10.1016/j.jhydrol.2004.03.033 es_ES
dc.description.references Perrin, C., Michel, C., & Andréassian, V. (2003). Improvement of a parsimonious model for streamflow simulation. Journal of Hydrology, 279(1-4), 275-289. doi:10.1016/s0022-1694(03)00225-7 es_ES
dc.description.references Muttil, N., & Jayawardena, A. W. (2008). Shuffled Complex Evolution model calibrating algorithm: enhancing its robustness and efficiency. Hydrological Processes, 22(23), 4628-4638. doi:10.1002/hyp.7082 es_ES
dc.description.references Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10(3), 282-290. doi:10.1016/0022-1694(70)90255-6 es_ES
dc.description.references Eckhardt, K., Haverkamp, S., Fohrer, N., & Frede, H.-G. (2002). SWAT-G, a version of SWAT99.2 modified for application to low mountain range catchments. Physics and Chemistry of the Earth, Parts A/B/C, 27(9-10), 641-644. doi:10.1016/s1474-7065(02)00048-7 es_ES
dc.description.references Kalin, L., Govindaraju, R. S., & Hantush, M. M. (2003). Effect of geomorphologic resolution on modeling of runoff hydrograph and sedimentograph over small watersheds. Journal of Hydrology, 276(1-4), 89-111. doi:10.1016/s0022-1694(03)00072-6 es_ES
dc.description.references Merz, R., & Blöschl, G. (2004). Regionalisation of catchment model parameters. Journal of Hydrology, 287(1-4), 95-123. doi:10.1016/j.jhydrol.2003.09.028 es_ES
dc.description.references D. N. Moriasi, J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, & T. L. Veith. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50(3), 885-900. doi:10.13031/2013.23153 es_ES
dc.description.references Kapnick, S., & Hall, A. (2010). Observed Climate–Snowpack Relationships in California and their Implications for the Future. Journal of Climate, 23(13), 3446-3456. doi:10.1175/2010jcli2903.1 es_ES
dc.description.references Singh, P., Kumar, N., & Arora, M. (2000). Degree–day factors for snow and ice for Dokriani Glacier, Garhwal Himalayas. Journal of Hydrology, 235(1-2), 1-11. doi:10.1016/s0022-1694(00)00249-3 es_ES
dc.description.references Koren, V., Reed, S., Smith, M., Zhang, Z., & Seo, D.-J. (2004). Hydrology laboratory research modeling system (HL-RMS) of the US national weather service. Journal of Hydrology, 291(3-4), 297-318. doi:10.1016/j.jhydrol.2003.12.039 es_ES
dc.description.references Ciarapica, L., & Todini, E. (2002). TOPKAPI: a model for the representation of the rainfall-runoff process at different scales. Hydrological Processes, 16(2), 207-229. doi:10.1002/hyp.342 es_ES
dc.description.references Shamir, E., & Georgakakos, K. P. (2006). Distributed snow accumulation and ablation modeling in the American River basin. Advances in Water Resources, 29(4), 558-570. doi:10.1016/j.advwatres.2005.06.010 es_ES
dc.description.references Shamir, E., & Georgakakos, K. P. (2007). Estimating snow depletion curves for American River basins using distributed snow modeling. Journal of Hydrology, 334(1-2), 162-173. doi:10.1016/j.jhydrol.2006.10.007 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem