Mostrar el registro sencillo del ítem
dc.contributor.author | Orozco Medina, Ismael | es_ES |
dc.contributor.author | Francés, F. | es_ES |
dc.contributor.author | Mora, Jesús | es_ES |
dc.date.accessioned | 2020-05-22T03:03:00Z | |
dc.date.available | 2020-05-22T03:03:00Z | |
dc.date.issued | 2019-06-20 | es_ES |
dc.identifier.issn | 2073-4441 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/144101 | |
dc.description.abstract | [EN] The success of hydrological modeling of a high mountain basin depends in most case on the accurate quantification of the snowmelt. However, mathematically modeling snowmelt is not a simple task due to, on one hand, the high number of variables that can be relevant and can change significantly in space and, in the other hand, the low availability of most of them in practical engineering. Therefore, this research proposes to modify the original equation of the classical degree-day model to introduce the spatial and temporal variability of the degree-day factor. To evaluate the effects of the variability in the hydrological modeling and the snowmelt modeling at the cell and hillslope scale. We propose to introduce the spatial and temporal variability of the degree-day factor using maps of radiation indices. These maps consider the position of the sun according to the time of year, solar radiation, insolation, topography and shaded-relief topography. Our priority has been to keep the parsimony of the snowmelt model that can be implemented in high mountain basins with limited observed input. The snowmelt model was included as a new module in the TETIS distributed hydrological model. The results show significant improvements in hydrological modeling in the spring period when the snowmelt is more important. At cell and hillslope scale errors are diminished in the snowpack, improving the representation of the flows and storages that intervene in high mountain basins. | es_ES |
dc.description.sponsorship | This study was supported by the Universidad de Guanajuato, Spanish National Parks Administration through the ACOPLA project (OAPN 011/2008), the Spanish Ministry of Science and Innovation through the projects ECO-TETIS (CGL2011-28776-C02-01), TETISMED (CGL2014-58127-C3-3-R) and TETISCHANGE (RTI2018-093717-B-I00). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Water | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Distributed degree-day snowmelt model | es_ES |
dc.subject | Parsimonious hydrological modeling | es_ES |
dc.subject | TETIS model | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | Parsimonious Modeling of Snow Accumulation and Snowmelt Processes in High Mountain Basins | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/w11061288 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/OAPN//011%2F2008/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//CGL2011-28776-C02-01/ES/MODELACION ECOHIDROLOGICA DISTRIBUIDA A ESCALA DE CUENCA PARA BOSQUES EN CLIMAS SEMIARIDOS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//CGL2014-58127-C3-3-R/ES/MEJORAS BIOGEOQUIMICAS EN EL MODELO TETIS Y SU EXPLOTACION EN EL ANALISIS DEL IMPACTO DEL CAMBIO GLOBAL EN LOS CICLOS DEL AGUA, CALIDAD Y SEDIMENTOS EN CUENCAS MEDITERRANEAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-093717-B-I00/ES/MEJORAS DEL CONOCIMIENTO Y DE LAS CAPACIDADES DE MODELIZACION PARA LA PROGNOSIS DE LOS EFECTOS DEL CAMBIO GLOBAL EN UNA CUENCA HIDROLOGICA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Orozco Medina, I.; Francés, F.; Mora, J. (2019). Parsimonious Modeling of Snow Accumulation and Snowmelt Processes in High Mountain Basins. Water. 11(6):1-19. https://doi.org/10.3390/w11061288 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/w11061288 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 19 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 11 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.pasarela | S\410656 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Universidad de Guanajuato | es_ES |
dc.contributor.funder | Organismo Autónomo de Parques Nacionales | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Riboust, P., Thirel, G., Moine, N. L., & Ribstein, P. (2019). Revisiting a Simple Degree-Day Model for Integrating Satellite Data: Implementation of Swe-Sca Hystereses. Journal of Hydrology and Hydromechanics, 67(1), 70-81. doi:10.2478/johh-2018-0004 | es_ES |
dc.description.references | Beniston, M., Farinotti, D., Stoffel, M., Andreassen, L. M., Coppola, E., Eckert, N., … Vincent, C. (2018). The European mountain cryosphere: a review of its current state, trends, and future challenges. The Cryosphere, 12(2), 759-794. doi:10.5194/tc-12-759-2018 | es_ES |
dc.description.references | Bernsteinová, J., Bässler, C., Zimmermann, L., Langhammer, J., & Beudert, B. (2015). Changes in runoff in two neighbouring catchments in the Bohemian Forest related to climate and land cover changes. Journal of Hydrology and Hydromechanics, 63(4), 342-352. doi:10.1515/johh-2015-0037 | es_ES |
dc.description.references | Mateo-Lázaro, J., Castillo-Mateo, J., Sánchez-Navarro, J., Fuertes-Rodríguez, V., García-Gil, A., & Edo-Romero, V. (2019). Assessment of the Role of Snowmelt in a Flood Event in a Gauged Catchment. Water, 11(3), 506. doi:10.3390/w11030506 | es_ES |
dc.description.references | Vormoor, K., Lawrence, D., Heistermann, M., & Bronstert, A. (2015). Climate change impacts on the seasonality and generation processes of floods – projections and uncertainties for catchments with mixed snowmelt/rainfall regimes. Hydrology and Earth System Sciences, 19(2), 913-931. doi:10.5194/hess-19-913-2015 | es_ES |
dc.description.references | Kling, H., Fürst, J., & Nachtnebel, H. P. (2006). Seasonal, spatially distributed modelling of accumulation and melting of snow for computing runoff in a long-term, large-basin water balance model. Hydrological Processes, 20(10), 2141-2156. doi:10.1002/hyp.6203 | es_ES |
dc.description.references | Verdhen, A., Chahar, B. R., & Sharma, O. P. (2014). Springtime Snowmelt and Streamflow Predictions in the Himalayan Mountains. Journal of Hydrologic Engineering, 19(7), 1452-1461. doi:10.1061/(asce)he.1943-5584.0000816 | es_ES |
dc.description.references | Dudley, R. W., Hodgkins, G. A., McHale, M. R., Kolian, M. J., & Renard, B. (2017). Trends in snowmelt-related streamflow timing in the conterminous United States. Journal of Hydrology, 547, 208-221. doi:10.1016/j.jhydrol.2017.01.051 | es_ES |
dc.description.references | Penna, D., van Meerveld, H. J., Zuecco, G., Dalla Fontana, G., & Borga, M. (2016). Hydrological response of an Alpine catchment to rainfall and snowmelt events. Journal of Hydrology, 537, 382-397. doi:10.1016/j.jhydrol.2016.03.040 | es_ES |
dc.description.references | Vormoor, K., Lawrence, D., Schlichting, L., Wilson, D., & Wong, W. K. (2016). Evidence for changes in the magnitude and frequency of observed rainfall vs. snowmelt driven floods in Norway. Journal of Hydrology, 538, 33-48. doi:10.1016/j.jhydrol.2016.03.066 | es_ES |
dc.description.references | Yilmaz, A. G., Imteaz, M. A., & Ogwuda, O. (2012). Accuracy of HEC-HMS and LBRM Models in Simulating Snow Runoffs in Upper Euphrates Basin. Journal of Hydrologic Engineering, 17(2), 342-347. doi:10.1061/(asce)he.1943-5584.0000442 | es_ES |
dc.description.references | Costa, D., Pomeroy, J., & Wheater, H. (2018). A numerical model for the simulation of snowpack solute dynamics to capture runoff ionic pulses during snowmelt: The PULSE model. Advances in Water Resources, 122, 37-48. doi:10.1016/j.advwatres.2018.09.008 | es_ES |
dc.description.references | Fuka, D. R., Easton, Z. M., Brooks, E. S., Boll, J., Steenhuis, T. S., & Walter, M. T. (2012). A Simple Process-Based Snowmelt Routine to Model Spatially Distributed Snow Depth and Snowmelt in the SWAT Model1. JAWRA Journal of the American Water Resources Association, 48(6), 1151-1161. doi:10.1111/j.1752-1688.2012.00680.x | es_ES |
dc.description.references | Schilling, O. S., Park, Y.-J., Therrien, R., & Nagare, R. M. (2018). Integrated Surface and Subsurface Hydrological Modeling with Snowmelt and Pore Water Freeze-Thaw. Groundwater, 57(1), 63-74. doi:10.1111/gwat.12841 | es_ES |
dc.description.references | Semádeni-Davies, A. F. (2000). Representation of Snow in Urban Drainage Models. Journal of Hydrologic Engineering, 5(4), 363-370. doi:10.1061/(asce)1084-0699(2000)5:4(363) | es_ES |
dc.description.references | Žaknić-Ćatović, A., Howard, K. W. F., & Ćatović, Z. (2017). Modification of the degree-day formula for diurnal meltwater generation and refreezing. Theoretical and Applied Climatology, 131(3-4), 1157-1171. doi:10.1007/s00704-017-2034-8 | es_ES |
dc.description.references | Hock, R. (1999). A distributed temperature-index ice- and snowmelt model including potential direct solar radiation. Journal of Glaciology, 45(149), 101-111. doi:10.3189/s0022143000003087 | es_ES |
dc.description.references | Kustas, W. P., Rango, A., & Uijlenhoet, R. (1994). A simple energy budget algorithm for the snowmelt runoff model. Water Resources Research, 30(5), 1515-1527. doi:10.1029/94wr00152 | es_ES |
dc.description.references | Braithwaite, R. J. (1995). Positive degree-day factors for ablation on the Greenland ice sheet studied by energy-balance modelling. Journal of Glaciology, 41(137), 153-160. doi:10.1017/s0022143000017846 | es_ES |
dc.description.references | Cazorzi, F., & Dalla Fontana, G. (1996). Snowmelt modelling by combining air temperature and a distributed radiation index. Journal of Hydrology, 181(1-4), 169-187. doi:10.1016/0022-1694(95)02913-3 | es_ES |
dc.description.references | Hock, R. (2003). Temperature index melt modelling in mountain areas. Journal of Hydrology, 282(1-4), 104-115. doi:10.1016/s0022-1694(03)00257-9 | es_ES |
dc.description.references | Francés, F., Vélez, J. I., & Vélez, J. J. (2007). Split-parameter structure for the automatic calibration of distributed hydrological models. Journal of Hydrology, 332(1-2), 226-240. doi:10.1016/j.jhydrol.2006.06.032 | es_ES |
dc.description.references | Buendia, C., Bussi, G., Tuset, J., Vericat, D., Sabater, S., Palau, A., & Batalla, R. J. (2016). Effects of afforestation on runoff and sediment load in an upland Mediterranean catchment. Science of The Total Environment, 540, 144-157. doi:10.1016/j.scitotenv.2015.07.005 | es_ES |
dc.description.references | Rogelis, M. C., Werner, M., Obregón, N., & Wright, N. (2016). Hydrological model assessment for flood early warning in a tropical high mountain basin. doi:10.5194/hess-2016-30 | es_ES |
dc.description.references | Ruiz-Villanueva, V., Stoffel, M., Bussi, G., Francés, F., & Bréthaut, C. (2014). Climate change impacts on discharges of the Rhone River in Lyon by the end of the twenty-first century: model results and implications. Regional Environmental Change, 15(3), 505-515. doi:10.1007/s10113-014-0707-8 | es_ES |
dc.description.references | Orozco, I., Ramírez, A. I., & Francés, F. (2018). Modelación de los impactos del Cambio Climático sobre los flujos y almacenamientos en una cuenca de alta montaña. Ingeniería del agua, 22(3), 125. doi:10.4995/ia.2018.8931 | es_ES |
dc.description.references | McGrane, S. J., Hutchins, M. G., Miller, J. D., Bussi, G., Kjeldsen, T. R., & Loewenthal, M. (2017). During a winter of storms in a small UK catchment, hydrology and water quality responses follow a clear rural-urban gradient. Journal of Hydrology, 545, 463-477. doi:10.1016/j.jhydrol.2016.12.037 | es_ES |
dc.description.references | Li, Z., & Fang, H. (2017). Modeling the impact of climate change on watershed discharge and sediment yield in the black soil region, northeastern China. Geomorphology, 293, 255-271. doi:10.1016/j.geomorph.2017.06.005 | es_ES |
dc.description.references | Smith, M., Koren, V., Zhang, Z., Moreda, F., Cui, Z., Cosgrove, B., … Staggs, S. (2013). The distributed model intercomparison project – Phase 2: Experiment design and summary results of the western basin experiments. Journal of Hydrology, 507, 300-329. doi:10.1016/j.jhydrol.2013.08.040 | es_ES |
dc.description.references | Simpson, J. J., Dettinger, M. D., Gehrke, F., McIntire, T. J., & Hufford, G. L. (2004). Hydrologic Scales, Cloud Variability, Remote Sensing, and Models: Implications for Forecasting Snowmelt and Streamflow. Weather and Forecasting, 19(2), 251-276. doi:10.1175/1520-0434(2004)019<0251:hscvrs>2.0.co;2 | es_ES |
dc.description.references | Rango, A., & Martinec, J. (1995). REVISITING THE DEGREE-DAY METHOD FOR SNOWMELT COMPUTATIONS. Journal of the American Water Resources Association, 31(4), 657-669. doi:10.1111/j.1752-1688.1995.tb03392.x | es_ES |
dc.description.references | Garen, D. C., & Marks, D. (2005). Spatially distributed energy balance snowmelt modelling in a mountainous river basin: estimation of meteorological inputs and verification of model results. Journal of Hydrology, 315(1-4), 126-153. doi:10.1016/j.jhydrol.2005.03.026 | es_ES |
dc.description.references | Kane, D. L., Gieck, R. E., & Hinzman, L. D. (1997). Snowmelt Modeling at Small Alaskan Arctic Watershed. Journal of Hydrologic Engineering, 2(4), 204-210. doi:10.1061/(asce)1084-0699(1997)2:4(204) | es_ES |
dc.description.references | Granberg, G., Grip, H., Löfvenius, M. O., Sundh, I., Svensson, B. H., & Nilsson, M. (1999). A simple model for simulation of water content, soil frost, and soil temperatures in boreal mixed mires. Water Resources Research, 35(12), 3771-3782. doi:10.1029/1999wr900216 | es_ES |
dc.description.references | Viviroli, D., Zappa, M., Gurtz, J., & Weingartner, R. (2009). An introduction to the hydrological modelling system PREVAH and its pre- and post-processing-tools. Environmental Modelling & Software, 24(10), 1209-1222. doi:10.1016/j.envsoft.2009.04.001 | es_ES |
dc.description.references | Smith, T. J., & Marshall, L. A. (2010). Exploring uncertainty and model predictive performance concepts via a modular snowmelt-runoff modeling framework. Environmental Modelling & Software, 25(6), 691-701. doi:10.1016/j.envsoft.2009.11.010 | es_ES |
dc.description.references | Ohmura, A., Kasser, P., & Funk, M. (1992). Climate at the Equilibrium Line of Glaciers. Journal of Glaciology, 38(130), 397-411. doi:10.1017/s0022143000002276 | es_ES |
dc.description.references | Fu, P., & Rich, P. M. (2002). A geometric solar radiation model with applications in agriculture and forestry. Computers and Electronics in Agriculture, 37(1-3), 25-35. doi:10.1016/s0168-1699(02)00115-1 | es_ES |
dc.description.references | Duan, Q., Sorooshian, S., & Gupta, V. (1992). Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resources Research, 28(4), 1015-1031. doi:10.1029/91wr02985 | es_ES |
dc.description.references | Duan, Q., Sorooshian, S., & Gupta, V. K. (1994). Optimal use of the SCE-UA global optimization method for calibrating watershed models. Journal of Hydrology, 158(3-4), 265-284. doi:10.1016/0022-1694(94)90057-4 | es_ES |
dc.description.references | K. Ajami, N., Gupta, H., Wagener, T., & Sorooshian, S. (2004). Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system. Journal of Hydrology, 298(1-4), 112-135. doi:10.1016/j.jhydrol.2004.03.033 | es_ES |
dc.description.references | Perrin, C., Michel, C., & Andréassian, V. (2003). Improvement of a parsimonious model for streamflow simulation. Journal of Hydrology, 279(1-4), 275-289. doi:10.1016/s0022-1694(03)00225-7 | es_ES |
dc.description.references | Muttil, N., & Jayawardena, A. W. (2008). Shuffled Complex Evolution model calibrating algorithm: enhancing its robustness and efficiency. Hydrological Processes, 22(23), 4628-4638. doi:10.1002/hyp.7082 | es_ES |
dc.description.references | Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10(3), 282-290. doi:10.1016/0022-1694(70)90255-6 | es_ES |
dc.description.references | Eckhardt, K., Haverkamp, S., Fohrer, N., & Frede, H.-G. (2002). SWAT-G, a version of SWAT99.2 modified for application to low mountain range catchments. Physics and Chemistry of the Earth, Parts A/B/C, 27(9-10), 641-644. doi:10.1016/s1474-7065(02)00048-7 | es_ES |
dc.description.references | Kalin, L., Govindaraju, R. S., & Hantush, M. M. (2003). Effect of geomorphologic resolution on modeling of runoff hydrograph and sedimentograph over small watersheds. Journal of Hydrology, 276(1-4), 89-111. doi:10.1016/s0022-1694(03)00072-6 | es_ES |
dc.description.references | Merz, R., & Blöschl, G. (2004). Regionalisation of catchment model parameters. Journal of Hydrology, 287(1-4), 95-123. doi:10.1016/j.jhydrol.2003.09.028 | es_ES |
dc.description.references | D. N. Moriasi, J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, & T. L. Veith. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50(3), 885-900. doi:10.13031/2013.23153 | es_ES |
dc.description.references | Kapnick, S., & Hall, A. (2010). Observed Climate–Snowpack Relationships in California and their Implications for the Future. Journal of Climate, 23(13), 3446-3456. doi:10.1175/2010jcli2903.1 | es_ES |
dc.description.references | Singh, P., Kumar, N., & Arora, M. (2000). Degree–day factors for snow and ice for Dokriani Glacier, Garhwal Himalayas. Journal of Hydrology, 235(1-2), 1-11. doi:10.1016/s0022-1694(00)00249-3 | es_ES |
dc.description.references | Koren, V., Reed, S., Smith, M., Zhang, Z., & Seo, D.-J. (2004). Hydrology laboratory research modeling system (HL-RMS) of the US national weather service. Journal of Hydrology, 291(3-4), 297-318. doi:10.1016/j.jhydrol.2003.12.039 | es_ES |
dc.description.references | Ciarapica, L., & Todini, E. (2002). TOPKAPI: a model for the representation of the rainfall-runoff process at different scales. Hydrological Processes, 16(2), 207-229. doi:10.1002/hyp.342 | es_ES |
dc.description.references | Shamir, E., & Georgakakos, K. P. (2006). Distributed snow accumulation and ablation modeling in the American River basin. Advances in Water Resources, 29(4), 558-570. doi:10.1016/j.advwatres.2005.06.010 | es_ES |
dc.description.references | Shamir, E., & Georgakakos, K. P. (2007). Estimating snow depletion curves for American River basins using distributed snow modeling. Journal of Hydrology, 334(1-2), 162-173. doi:10.1016/j.jhydrol.2006.10.007 | es_ES |