- -

Parsimonious Modeling of Snow Accumulation and Snowmelt Processes in High Mountain Basins

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Parsimonious Modeling of Snow Accumulation and Snowmelt Processes in High Mountain Basins

Mostrar el registro completo del ítem

Orozco Medina, I.; Francés, F.; Mora, J. (2019). Parsimonious Modeling of Snow Accumulation and Snowmelt Processes in High Mountain Basins. Water. 11(6):1-19. https://doi.org/10.3390/w11061288

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144101

Ficheros en el ítem

Metadatos del ítem

Título: Parsimonious Modeling of Snow Accumulation and Snowmelt Processes in High Mountain Basins
Autor: Orozco Medina, Ismael Francés, F. Mora, Jesús
Entidad UPV: Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient
Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
[EN] The success of hydrological modeling of a high mountain basin depends in most case on the accurate quantification of the snowmelt. However, mathematically modeling snowmelt is not a simple task due to, on one hand, ...[+]
Palabras clave: Distributed degree-day snowmelt model , Parsimonious hydrological modeling , TETIS model
Derechos de uso: Reconocimiento (by)
Fuente:
Water. (issn: 2073-4441 )
DOI: 10.3390/w11061288
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/w11061288
Código del Proyecto:
info:eu-repo/grantAgreement/OAPN//011%2F2008/
info:eu-repo/grantAgreement/MICINN//CGL2011-28776-C02-01/ES/MODELACION ECOHIDROLOGICA DISTRIBUIDA A ESCALA DE CUENCA PARA BOSQUES EN CLIMAS SEMIARIDOS/
info:eu-repo/grantAgreement/MINECO//CGL2014-58127-C3-3-R/ES/MEJORAS BIOGEOQUIMICAS EN EL MODELO TETIS Y SU EXPLOTACION EN EL ANALISIS DEL IMPACTO DEL CAMBIO GLOBAL EN LOS CICLOS DEL AGUA, CALIDAD Y SEDIMENTOS EN CUENCAS MEDITERRANEAS/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-093717-B-I00/ES/MEJORAS DEL CONOCIMIENTO Y DE LAS CAPACIDADES DE MODELIZACION PARA LA PROGNOSIS DE LOS EFECTOS DEL CAMBIO GLOBAL EN UNA CUENCA HIDROLOGICA/
Agradecimientos:
This study was supported by the Universidad de Guanajuato, Spanish National Parks Administration through the ACOPLA project (OAPN 011/2008), the Spanish Ministry of Science and Innovation through the projects ECO-TETIS ...[+]
Tipo: Artículo

References

Riboust, P., Thirel, G., Moine, N. L., & Ribstein, P. (2019). Revisiting a Simple Degree-Day Model for Integrating Satellite Data: Implementation of Swe-Sca Hystereses. Journal of Hydrology and Hydromechanics, 67(1), 70-81. doi:10.2478/johh-2018-0004

Beniston, M., Farinotti, D., Stoffel, M., Andreassen, L. M., Coppola, E., Eckert, N., … Vincent, C. (2018). The European mountain cryosphere: a review of its current state, trends, and future challenges. The Cryosphere, 12(2), 759-794. doi:10.5194/tc-12-759-2018

Bernsteinová, J., Bässler, C., Zimmermann, L., Langhammer, J., & Beudert, B. (2015). Changes in runoff in two neighbouring catchments in the Bohemian Forest related to climate and land cover changes. Journal of Hydrology and Hydromechanics, 63(4), 342-352. doi:10.1515/johh-2015-0037 [+]
Riboust, P., Thirel, G., Moine, N. L., & Ribstein, P. (2019). Revisiting a Simple Degree-Day Model for Integrating Satellite Data: Implementation of Swe-Sca Hystereses. Journal of Hydrology and Hydromechanics, 67(1), 70-81. doi:10.2478/johh-2018-0004

Beniston, M., Farinotti, D., Stoffel, M., Andreassen, L. M., Coppola, E., Eckert, N., … Vincent, C. (2018). The European mountain cryosphere: a review of its current state, trends, and future challenges. The Cryosphere, 12(2), 759-794. doi:10.5194/tc-12-759-2018

Bernsteinová, J., Bässler, C., Zimmermann, L., Langhammer, J., & Beudert, B. (2015). Changes in runoff in two neighbouring catchments in the Bohemian Forest related to climate and land cover changes. Journal of Hydrology and Hydromechanics, 63(4), 342-352. doi:10.1515/johh-2015-0037

Mateo-Lázaro, J., Castillo-Mateo, J., Sánchez-Navarro, J., Fuertes-Rodríguez, V., García-Gil, A., & Edo-Romero, V. (2019). Assessment of the Role of Snowmelt in a Flood Event in a Gauged Catchment. Water, 11(3), 506. doi:10.3390/w11030506

Vormoor, K., Lawrence, D., Heistermann, M., & Bronstert, A. (2015). Climate change impacts on the seasonality and generation processes of floods – projections and uncertainties for catchments with mixed snowmelt/rainfall regimes. Hydrology and Earth System Sciences, 19(2), 913-931. doi:10.5194/hess-19-913-2015

Kling, H., Fürst, J., & Nachtnebel, H. P. (2006). Seasonal, spatially distributed modelling of accumulation and melting of snow for computing runoff in a long-term, large-basin water balance model. Hydrological Processes, 20(10), 2141-2156. doi:10.1002/hyp.6203

Verdhen, A., Chahar, B. R., & Sharma, O. P. (2014). Springtime Snowmelt and Streamflow Predictions in the Himalayan Mountains. Journal of Hydrologic Engineering, 19(7), 1452-1461. doi:10.1061/(asce)he.1943-5584.0000816

Dudley, R. W., Hodgkins, G. A., McHale, M. R., Kolian, M. J., & Renard, B. (2017). Trends in snowmelt-related streamflow timing in the conterminous United States. Journal of Hydrology, 547, 208-221. doi:10.1016/j.jhydrol.2017.01.051

Penna, D., van Meerveld, H. J., Zuecco, G., Dalla Fontana, G., & Borga, M. (2016). Hydrological response of an Alpine catchment to rainfall and snowmelt events. Journal of Hydrology, 537, 382-397. doi:10.1016/j.jhydrol.2016.03.040

Vormoor, K., Lawrence, D., Schlichting, L., Wilson, D., & Wong, W. K. (2016). Evidence for changes in the magnitude and frequency of observed rainfall vs. snowmelt driven floods in Norway. Journal of Hydrology, 538, 33-48. doi:10.1016/j.jhydrol.2016.03.066

Yilmaz, A. G., Imteaz, M. A., & Ogwuda, O. (2012). Accuracy of HEC-HMS and LBRM Models in Simulating Snow Runoffs in Upper Euphrates Basin. Journal of Hydrologic Engineering, 17(2), 342-347. doi:10.1061/(asce)he.1943-5584.0000442

Costa, D., Pomeroy, J., & Wheater, H. (2018). A numerical model for the simulation of snowpack solute dynamics to capture runoff ionic pulses during snowmelt: The PULSE model. Advances in Water Resources, 122, 37-48. doi:10.1016/j.advwatres.2018.09.008

Fuka, D. R., Easton, Z. M., Brooks, E. S., Boll, J., Steenhuis, T. S., & Walter, M. T. (2012). A Simple Process-Based Snowmelt Routine to Model Spatially Distributed Snow Depth and Snowmelt in the SWAT Model1. JAWRA Journal of the American Water Resources Association, 48(6), 1151-1161. doi:10.1111/j.1752-1688.2012.00680.x

Schilling, O. S., Park, Y.-J., Therrien, R., & Nagare, R. M. (2018). Integrated Surface and Subsurface Hydrological Modeling with Snowmelt and Pore Water Freeze-Thaw. Groundwater, 57(1), 63-74. doi:10.1111/gwat.12841

Semádeni-Davies, A. F. (2000). Representation of Snow in Urban Drainage Models. Journal of Hydrologic Engineering, 5(4), 363-370. doi:10.1061/(asce)1084-0699(2000)5:4(363)

Žaknić-Ćatović, A., Howard, K. W. F., & Ćatović, Z. (2017). Modification of the degree-day formula for diurnal meltwater generation and refreezing. Theoretical and Applied Climatology, 131(3-4), 1157-1171. doi:10.1007/s00704-017-2034-8

Hock, R. (1999). A distributed temperature-index ice- and snowmelt model including potential direct solar radiation. Journal of Glaciology, 45(149), 101-111. doi:10.3189/s0022143000003087

Kustas, W. P., Rango, A., & Uijlenhoet, R. (1994). A simple energy budget algorithm for the snowmelt runoff model. Water Resources Research, 30(5), 1515-1527. doi:10.1029/94wr00152

Braithwaite, R. J. (1995). Positive degree-day factors for ablation on the Greenland ice sheet studied by energy-balance modelling. Journal of Glaciology, 41(137), 153-160. doi:10.1017/s0022143000017846

Cazorzi, F., & Dalla Fontana, G. (1996). Snowmelt modelling by combining air temperature and a distributed radiation index. Journal of Hydrology, 181(1-4), 169-187. doi:10.1016/0022-1694(95)02913-3

Hock, R. (2003). Temperature index melt modelling in mountain areas. Journal of Hydrology, 282(1-4), 104-115. doi:10.1016/s0022-1694(03)00257-9

Francés, F., Vélez, J. I., & Vélez, J. J. (2007). Split-parameter structure for the automatic calibration of distributed hydrological models. Journal of Hydrology, 332(1-2), 226-240. doi:10.1016/j.jhydrol.2006.06.032

Buendia, C., Bussi, G., Tuset, J., Vericat, D., Sabater, S., Palau, A., & Batalla, R. J. (2016). Effects of afforestation on runoff and sediment load in an upland Mediterranean catchment. Science of The Total Environment, 540, 144-157. doi:10.1016/j.scitotenv.2015.07.005

Rogelis, M. C., Werner, M., Obregón, N., & Wright, N. (2016). Hydrological model assessment for flood early warning in a tropical high mountain basin. doi:10.5194/hess-2016-30

Ruiz-Villanueva, V., Stoffel, M., Bussi, G., Francés, F., & Bréthaut, C. (2014). Climate change impacts on discharges of the Rhone River in Lyon by the end of the twenty-first century: model results and implications. Regional Environmental Change, 15(3), 505-515. doi:10.1007/s10113-014-0707-8

Orozco, I., Ramírez, A. I., & Francés, F. (2018). Modelación de los impactos del Cambio Climático sobre los flujos y almacenamientos en una cuenca de alta montaña. Ingeniería del agua, 22(3), 125. doi:10.4995/ia.2018.8931

McGrane, S. J., Hutchins, M. G., Miller, J. D., Bussi, G., Kjeldsen, T. R., & Loewenthal, M. (2017). During a winter of storms in a small UK catchment, hydrology and water quality responses follow a clear rural-urban gradient. Journal of Hydrology, 545, 463-477. doi:10.1016/j.jhydrol.2016.12.037

Li, Z., & Fang, H. (2017). Modeling the impact of climate change on watershed discharge and sediment yield in the black soil region, northeastern China. Geomorphology, 293, 255-271. doi:10.1016/j.geomorph.2017.06.005

Smith, M., Koren, V., Zhang, Z., Moreda, F., Cui, Z., Cosgrove, B., … Staggs, S. (2013). The distributed model intercomparison project – Phase 2: Experiment design and summary results of the western basin experiments. Journal of Hydrology, 507, 300-329. doi:10.1016/j.jhydrol.2013.08.040

Simpson, J. J., Dettinger, M. D., Gehrke, F., McIntire, T. J., & Hufford, G. L. (2004). Hydrologic Scales, Cloud Variability, Remote Sensing, and Models: Implications for Forecasting Snowmelt and Streamflow. Weather and Forecasting, 19(2), 251-276. doi:10.1175/1520-0434(2004)019<0251:hscvrs>2.0.co;2

Rango, A., & Martinec, J. (1995). REVISITING THE DEGREE-DAY METHOD FOR SNOWMELT COMPUTATIONS. Journal of the American Water Resources Association, 31(4), 657-669. doi:10.1111/j.1752-1688.1995.tb03392.x

Garen, D. C., & Marks, D. (2005). Spatially distributed energy balance snowmelt modelling in a mountainous river basin: estimation of meteorological inputs and verification of model results. Journal of Hydrology, 315(1-4), 126-153. doi:10.1016/j.jhydrol.2005.03.026

Kane, D. L., Gieck, R. E., & Hinzman, L. D. (1997). Snowmelt Modeling at Small Alaskan Arctic Watershed. Journal of Hydrologic Engineering, 2(4), 204-210. doi:10.1061/(asce)1084-0699(1997)2:4(204)

Granberg, G., Grip, H., Löfvenius, M. O., Sundh, I., Svensson, B. H., & Nilsson, M. (1999). A simple model for simulation of water content, soil frost, and soil temperatures in boreal mixed mires. Water Resources Research, 35(12), 3771-3782. doi:10.1029/1999wr900216

Viviroli, D., Zappa, M., Gurtz, J., & Weingartner, R. (2009). An introduction to the hydrological modelling system PREVAH and its pre- and post-processing-tools. Environmental Modelling & Software, 24(10), 1209-1222. doi:10.1016/j.envsoft.2009.04.001

Smith, T. J., & Marshall, L. A. (2010). Exploring uncertainty and model predictive performance concepts via a modular snowmelt-runoff modeling framework. Environmental Modelling & Software, 25(6), 691-701. doi:10.1016/j.envsoft.2009.11.010

Ohmura, A., Kasser, P., & Funk, M. (1992). Climate at the Equilibrium Line of Glaciers. Journal of Glaciology, 38(130), 397-411. doi:10.1017/s0022143000002276

Fu, P., & Rich, P. M. (2002). A geometric solar radiation model with applications in agriculture and forestry. Computers and Electronics in Agriculture, 37(1-3), 25-35. doi:10.1016/s0168-1699(02)00115-1

Duan, Q., Sorooshian, S., & Gupta, V. (1992). Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resources Research, 28(4), 1015-1031. doi:10.1029/91wr02985

Duan, Q., Sorooshian, S., & Gupta, V. K. (1994). Optimal use of the SCE-UA global optimization method for calibrating watershed models. Journal of Hydrology, 158(3-4), 265-284. doi:10.1016/0022-1694(94)90057-4

K. Ajami, N., Gupta, H., Wagener, T., & Sorooshian, S. (2004). Calibration of a semi-distributed hydrologic model for streamflow estimation along a river system. Journal of Hydrology, 298(1-4), 112-135. doi:10.1016/j.jhydrol.2004.03.033

Perrin, C., Michel, C., & Andréassian, V. (2003). Improvement of a parsimonious model for streamflow simulation. Journal of Hydrology, 279(1-4), 275-289. doi:10.1016/s0022-1694(03)00225-7

Muttil, N., & Jayawardena, A. W. (2008). Shuffled Complex Evolution model calibrating algorithm: enhancing its robustness and efficiency. Hydrological Processes, 22(23), 4628-4638. doi:10.1002/hyp.7082

Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10(3), 282-290. doi:10.1016/0022-1694(70)90255-6

Eckhardt, K., Haverkamp, S., Fohrer, N., & Frede, H.-G. (2002). SWAT-G, a version of SWAT99.2 modified for application to low mountain range catchments. Physics and Chemistry of the Earth, Parts A/B/C, 27(9-10), 641-644. doi:10.1016/s1474-7065(02)00048-7

Kalin, L., Govindaraju, R. S., & Hantush, M. M. (2003). Effect of geomorphologic resolution on modeling of runoff hydrograph and sedimentograph over small watersheds. Journal of Hydrology, 276(1-4), 89-111. doi:10.1016/s0022-1694(03)00072-6

Merz, R., & Blöschl, G. (2004). Regionalisation of catchment model parameters. Journal of Hydrology, 287(1-4), 95-123. doi:10.1016/j.jhydrol.2003.09.028

D. N. Moriasi, J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, & T. L. Veith. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50(3), 885-900. doi:10.13031/2013.23153

Kapnick, S., & Hall, A. (2010). Observed Climate–Snowpack Relationships in California and their Implications for the Future. Journal of Climate, 23(13), 3446-3456. doi:10.1175/2010jcli2903.1

Singh, P., Kumar, N., & Arora, M. (2000). Degree–day factors for snow and ice for Dokriani Glacier, Garhwal Himalayas. Journal of Hydrology, 235(1-2), 1-11. doi:10.1016/s0022-1694(00)00249-3

Koren, V., Reed, S., Smith, M., Zhang, Z., & Seo, D.-J. (2004). Hydrology laboratory research modeling system (HL-RMS) of the US national weather service. Journal of Hydrology, 291(3-4), 297-318. doi:10.1016/j.jhydrol.2003.12.039

Ciarapica, L., & Todini, E. (2002). TOPKAPI: a model for the representation of the rainfall-runoff process at different scales. Hydrological Processes, 16(2), 207-229. doi:10.1002/hyp.342

Shamir, E., & Georgakakos, K. P. (2006). Distributed snow accumulation and ablation modeling in the American River basin. Advances in Water Resources, 29(4), 558-570. doi:10.1016/j.advwatres.2005.06.010

Shamir, E., & Georgakakos, K. P. (2007). Estimating snow depletion curves for American River basins using distributed snow modeling. Journal of Hydrology, 334(1-2), 162-173. doi:10.1016/j.jhydrol.2006.10.007

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem