- -

Bases para el desarrollo de Micromáquinas Herramienta Paralelas

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Bases para el desarrollo de Micromáquinas Herramienta Paralelas

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Yáñez Valdez, Ricardo es_ES
dc.date.accessioned 2020-05-22T18:51:05Z
dc.date.available 2020-05-22T18:51:05Z
dc.date.issued 2014-04-13
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/144185
dc.description.abstract [ES] El presente trabajo pretende sentar las bases del desarrollo de micromáquinas herramienta paralelas. Se plantean condiciones básicas y se propone un proceso de selección de configuraciones paralelas con miras a su implementación como micromáquinas herramienta. Con base en requerimientos e índices de desempeño se seleccionó una configuración paralela con todas las cualidades solicitadas para desempeñar tareas de micromecanizado. Se aborda con mayor detalle el proceso de selección para un caso de estudio donde 3 ejes traslacionales de movimiento son requeridos. Con base en el resultado del proceso de selección y en especificaciones de diseño, se construyó y se evaluó un prototipo de micromáquina herramienta paralela. El resultado de la investigación realizada muestra que es factible realizar tareas de micromecanizado con el prototipo de micromáquina herramienta paralela. es_ES
dc.description.abstract [EN] This work aims to establish the development basis of parallel configurations based micromachine tools. Basic conditions are identified from typical micromachine tools in order to propose a selection process of parallel configurations with the aim to develop micro-parallel kinematic machines. Based on requirements and performance indices a 3DOF parallel configuration is selected. The selection process is applied for a case of study where 3 axes of movement are required. Based on previous results and specifications, a prototype of micro-parallel kinematic machine is built and evaluated. Through test analysis, the micro-parallel kinematic machine is proved to be feasible and applicable for micro-manufacturing. es_ES
dc.description.sponsorship Se agradece a los coordinadores del grupo de Micromecánica y Mecatrónica del CCADET-UNAM, Dr. Leopoldo Ruiz Huerta y Dr. Alberto Caballero Ruiz, por sus valiosos comentarios y la oportunidad de desarrollar el trabajo de investigación con el apoyo de la DGEP-UNAM y los proyectos PAPIME PE105909 y CONACYT 60895. es_ES
dc.language Español es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Decoupled motion es_ES
dc.subject Force isotropy es_ES
dc.subject Micromachine tool es_ES
dc.subject Microparallel kinematic machine es_ES
dc.subject Performance indices es_ES
dc.subject Reachable workspace es_ES
dc.subject Selection method es_ES
dc.subject Type synthesis es_ES
dc.subject Desacoplamiento cinemático es_ES
dc.subject Espacio de trabajo es_ES
dc.subject Índices de desempeño es_ES
dc.subject Isotropía de fuerzas es_ES
dc.subject Mecanismo paralelo es_ES
dc.subject Micromáquina herramienta es_ES
dc.subject Proceso de selección es_ES
dc.subject Síntesis de tipo es_ES
dc.title Bases para el desarrollo de Micromáquinas Herramienta Paralelas es_ES
dc.title.alternative Basis for the development of micro-parallel kinematic machines es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.riai.2014.02.004
dc.relation.projectID info:eu-repo/grantAgreement/UNAM/PAPIME/PE105909/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CONACyT//60895/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Yáñez Valdez, R. (2014). Bases para el desarrollo de Micromáquinas Herramienta Paralelas. Revista Iberoamericana de Automática e Informática industrial. 11(2):212-223. https://doi.org/10.1016/j.riai.2014.02.004 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.riai.2014.02.004 es_ES
dc.description.upvformatpinicio 212 es_ES
dc.description.upvformatpfin 223 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\9461 es_ES
dc.contributor.funder Universidad Nacional Autónoma de México es_ES
dc.contributor.funder Consejo Nacional de Ciencia y Tecnología, México es_ES
dc.description.references Angeles, J. 2004. The qualitative synthesis of parallel manipulators. Mechanical Design 126(4) pp. 617-624. es_ES
dc.description.references Aracil, R., Saltarén, R., Sabater, J. Reinoso, O. 2006. Robots paralelos: máquinas con un pasado para una robótica del futuro. Revista Iberoamericana de Automática e Informática Industrial 3(1) pp. 26-28. es_ES
dc.description.references Arakelian, V., Briot, S., Guegan, S., Le Flecher, J. 2005. Design and prototyping of new 4, 5 and 6 degrees of freedom parallel manipulators based on the copying properties of the pantograph linkage. Proceedings of 36th International Symposium on Robotics ISR, Tokyo, Japan. es_ES
dc.description.references Ataka, T. 1999. The experimental microfactory system in japanese national R&D project. R&D Department, Scientific Instruments Division, Seiko Instruments Inc. 36-1. es_ES
dc.description.references Beltrami, I., Joseph, C., Clavel, R., Bacher, J.P., Bottinelli, S. 2004. Micro- and nanoelectric-discharge machining. Materials Processing Technology, 149(1-3) pp. 263-265. es_ES
dc.description.references Clavel, R. 1988. DELTA, a fast robot with parallel geometry. International Symposium on Industrial Robots. 12-17 Lausanne, pp. 91-100. es_ES
dc.description.references Chablat, D., Wenger, Ph. 2003. Architecture optimization of a 3-DOF translational parallel mechanism for machining applications, the orthoglide. IEEE Transactions on Robotics and Automation 19(3) pp. 403-410. es_ES
dc.description.references Dario, P., Menciassi, A., Stefanini, C., Accoto, D. 2002. Miniaturization of biomedical micromachines. 2nd. Annual International IEEE- EMBS Special Topic Conference on Micrtechnologies in Medicine & Biology. IEEE. Madison, Wisconsin USA, pp. 291-296. es_ES
dc.description.references Dario, P., Valleggi, R., Carrozza, M.C., Montesit M. C., and Coccot M. 1992. Microactuators for microrobots: A critical survey. Micromechanic and Microengineering 2, pp. 141-157. es_ES
dc.description.references Denton, M. 2009. Hexapod CNC router strolls into action. Micro manufacturing, http://www.micromanufacturing.com/showthread.php? p=734. accessed: Octubre 2009. es_ES
dc.description.references Detter, H., Popovic G. 2000. Industrial demands on micromechanical products. IEEE Proc. 22nd International Conference on Microelectronics, NIS, Serbia, 14-17 May, pp. 61-67. es_ES
dc.description.references Dhanorker, A., Özel, T. 2008. Meso-micro scale milling for micro manufacturing. Mechatronics and Manufacturing Systems 1(1) pp. 23-42. es_ES
dc.description.references Dornfeld, D., Min, S., Takeuchi, Y. 2006. Recent advances in mechanical micromachining. Manufacturing Technology 55(2) pp. 745-768. es_ES
dc.description.references Ehmann, K.F., DeVor, R.E., Kapoor, S.G., Cao, J. 2008. Design and analysis of micro/meso-scale machine tools. Wang, L. and Xi, J. (Eds.) Smart Devices and Machines for Advanced Manufacturing. Springer, pp. 283-318. es_ES
dc.description.references Frazier, A.B. 1995. The miniaturization technologies: Past, present, and future. IEEE Transactions on Industrial Electronics 42(5) pp. 423-430. es_ES
dc.description.references Fujita, H., Toshiyoshi, H., Hashiguchi, G., Wada, Yasou. 2001. Micromachined tools for nano technology. RIKEN Review. Focused on Science and Technology in Micro/Nano Scale (36) pp. 12-15. es_ES
dc.description.references Gogu, G. 2004. Structural synthesis of fully-isotropic translational parallel robots via theory of linear transformations. European Journal of Mechanics A/Solids 23, pp. 1021-1039. es_ES
dc.description.references Gogu, G. 2008. Structural synthesis of Parallel Robots, Part 1: Methodology. Springer, Solid Mechanics and its applications Vol. 149. pp. 275. es_ES
dc.description.references Gosselin, C., Masouleh, M., Duchaine, V., Richard, P-L., Foucault, S., Kong, X. 2007. Parallel mechanisms of the multipteron family: Kinematic Architectures and Benchmarking. International Conference on Robotics and Automation. IEEE. Roma, Italy, 10-14 April, pp. 555-560. es_ES
dc.description.references Gosselin, C.M., Kong, X. 2004. Cartesian parallel manipulators, US Patent No. 6,729,202 B2. es_ES
dc.description.references Heikkilä, H.R., Karjalainen, I.T., Uusitalo, J.J., Vuola, A.S., Tuokko, R. O. 2007. Possibilities of a microfactory in the assembly of small part and products-first result of the M4-project. Proceedings of the International Symposium on Assembly and Manufacturing, Ann Arbor, Michigan, USA. es_ES
dc.description.references Jang, S.H., Jung, Y.M., Hwang, H.Y., Choi, Y.H., Park, J.K. 2008. Development of a reconfigurable micro machine tool for microfactory. International Conference on Smart Manufacturing Application. KINTEX. Gyeonggi-do, Korea, pp. 190-195. es_ES
dc.description.references Jin, Y., Chen, I.M., Yang, G. 2006. Kinematic design of a 6-DOF parallel manipulator with decoupled translation and rotation. IEEE Transactions on Robotics 22(3) pp. 545-551. es_ES
dc.description.references Kang, D.S., Seo, T.W., Yoon, Y.H., Shin, B.S., Liu, X-J., Kim, J. 2006 A micro positioning parallel mechanism platform with 100 degree tilting capability. Manufacturing Technology 55(1) pp. 377-380. es_ES
dc.description.references Kawahara, N., Suto, T., Hirano, T., Ishikawa, Y., Kitahara, T., Ooyama, N., Ataka T. 1997. Microfactories; new applications for micromachine technology to the manufacture of small products. Microsystem Technologies 3(2) pp. 37-41. es_ES
dc.description.references Kong, X., Gosselin, C.M. 2002. Type synthesis of linear translational parallel manipulators. J. Lenarcic, F. Thomas (Eds.), Advances in Robot Kinematics: Theory and Applications, Kluwer Academic Publishers, pp. 453-462. es_ES
dc.description.references Kussul, E., Baidyk, T., Ruiz-Huerta, L., Caballero-Ruiz, A., Velasco, G. 2006. Scaling down of microequipment parameters. Precision Engineering 30(2) pp. 211-222. es_ES
dc.description.references Kussul, E., Baidyk, T., Ruiz-Huerta, L., Caballero-Ruiz, A., Velasco, G., Kasatkina, I. 2002. Development of micromachine tool prototypes for microfactories. Micromechanics and Microengineering 12(6) pp. 795-812. es_ES
dc.description.references Kussul, E., Rachkovskij, D., Baidyk, T., Talayev, S. 1996. Micromechanical engineering: a basis for the low-cost manufacturing of mechanical microdevices using microequipment. Micromechanical and Microengineering 6(4) pp. 410-425. es_ES
dc.description.references Kussul, E., Ruiz-Huerta, L., Caballero-Ruiz, A., Kasatkin, A., Kasatkiana, L., Baidyk, T., Velasco, G. 2004. CNC machine tools for low cost micro devices manufacturing. Journal of applied research and technology 2(1) pp. 76-91. es_ES
dc.description.references Li, H., Lai, X., Li, C., Lin, Z., Miao, J., Ni, J. 2008. Development of meso-scale milling machine tool and its performance analysis. Frontiers of Mechanical Engineering in China 3(1) pp. 59-65. es_ES
dc.description.references Li, X., Wang, J., Li, W. 2007. Current state and prospect of micro- machining. Proceedings of the IEEE International Conference on Automation and Logistics, Jinan, China, pp. 1414-1419. es_ES
dc.description.references Li, Y., Bone, G. 2001. Are parallel manipulators more energy efficient? Proceedings of the International Symposium on Computational Intelligence in Robotics and Automation, Alberta, Canada, pp. 41-46. es_ES
dc.description.references Liang, Y., Zhaol, Y., Bai Q., Wang, S., Wang, B., Chen, M., Dou, J. 2006. Study on micromachine tools in fabrication of microparts. Proceedings of the 1st IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Zhuhai, China, pp. 856-859. es_ES
dc.description.references Mekid, S., Gordon, A., Nicholson, P. 2004. Challenges and rationale in the design of miniaturised machine tool. Proceedings of the 34th International MATADOR Conference at UMIST, Springer, pp. 456-471. es_ES
dc.description.references Merlet, J.P. 2006. Parallel Robots. Springer. ISBN-10: 1-4020-4132-2. es_ES
dc.description.references Moreno, H., Saltaren, R., Carrera, I., Puglisi, L., Aracil R. 2012. Índices de desempeño de robots manipuladores: una revisión del Estado del Arte. Revista Iberoamericana de Automática e Informática industrial 9(2) pp. 111-122. es_ES
dc.description.references Okazaki, Y., Kitahara, T. 2000. Micro-lathe equipped with closed-loop numerical control. 2nd International Workshop on Microfactories. Fribourg Switzerland, Oct 9-10, pp. 87-90. es_ES
dc.description.references Okazaki, Y., Mishima, N, and Ashida, K. 2002. Microfactory and micro machine tools. First Kore-Japan Conference on Positioning Technology, pp. 1-6. es_ES
dc.description.references Perroud, S., Codourey, A., Mussard Y. 2003. A miniature robot for the microfactory. Switzerland, CSEM Centre Suisse d’Electronique et de Microtechnique. es_ES
dc.description.references PI. 2013. Physik Instrumente. Accessed: April 2013, www.physikinstrumente.com/. es_ES
dc.description.references Press, W., Teukolsky, S., Vetterling, W., Flannery, B. 2002. Numerical recipes in C, The art of scientific computing. Cambridge University Press. es_ES
dc.description.references Rehsteiner, F., Neugebauer, R., Spiewak, S., Wieland, F. 1999. Putting parallel kinematics machines (PKM) to productive work. Manufacturing Technology 48(1) pp. 345-350. es_ES
dc.description.references Ruiz, L. 2000. Desarrollo de microtecnología mecánica para aplicaciones de instrumentación. Memoria SOMI XV Congreso Nacional de Instrumentación. Guadalajara, Jalisco México. es_ES
dc.description.references Singh, K. 2008. Expect changes when entering ‘micro’ world. Micro Manufacturing 1(1). es_ES
dc.description.references Slocum, A.H. 1992. Precision machine design: Macromachine design philosophy and its applicability to the design of micromachines. Proceedings of Micro Electro Mechanical Systems, MEMS ‘92. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robot., Travemunde, Germany, pp. 37-42. es_ES
dc.description.references Sparacino, F., Hervé, J. 1993. Synthesis of parallel manipulators using lie-groups Y-star and H-robot. International Workshop on Advanced Robotics, Tsukuba, Japan, November 8-9, pp. 75-80. es_ES
dc.description.references Staffetti, E., Bruyninckx, H., De Schutter, J. 2002. On the invariance of manipulability indices. J. Lenarcic, Thomas, F. (Eds.) Advances in Robot Kinematics, Kluwer Academic Publishers, pp. 57-66. es_ES
dc.description.references Tanaka, M. 2001. Development of desktop machining microfactory. RIKEN review: Focused on Advances on Micro Mechanical Fabrication Techniques, No. 34, pp. 46-49. es_ES
dc.description.references Tlusty, J., Ziegert, J., Ridgeway, S. 1999. Fundamental comparison of the use of serial and parallel kinematics for machines tools. Manufacturing Technology 48(1) pp. 351-356. es_ES
dc.description.references Tsai, L.W. 1997. Multi-degree-of-freedom mechanisms for machine tools and the like, US Patent No. 5,656,905. es_ES
dc.description.references Tsai, L.W. 1998. Systematic enumeration of parallel manipulator. Technical Research Report. T. R. 98-33, pp. 1-11. es_ES
dc.description.references Wang, Y., Zou, H., Zhao, Y., Li, M. 1997. Design and kinematics of a parallel manipulator for manufacturing. Manufacturing Technology 46(1) pp. 297-300. es_ES
dc.description.references Wu, Z., Rizk, R., Fauroux, J.C., Gogu, G. 2007. Numerical simulation of parallel robots with decoupled motions and complex structure in a modular design approach. Tichkiewitch, S., Tollenaere, M., Ray, P., (Eds.) Advances in Integrated Design and Manufacturing in Mechanical Engineering II, Springer. Part 3 pp. 129-144. es_ES
dc.description.references Yangmin, L., Qingsong, X. 2006. A new approach to the architecture optimization of a general 3-puu translational parallel manipulator. Intelligent & Robotic Systems 46(1) pp. 59-72. es_ES
dc.description.references Yoshikawa, T. 1985. Manipulability of robotic mechanism. The International Journal of Robotic Research 4(2) pp. 3-9. es_ES
dc.description.references Youssef, H., El-Hofi, H. 2008. Machining technology. Machine tools and operations. CRC Press. es_ES
dc.description.references Zanganeh, K., Angeles, J. 1997. Kinematic isotropy and the optimum design of parallel manipulators. Journal of Robotics Research 16(2) pp. 185-197. es_ES
dc.description.references Zhang, D. 2009. Parallel robotic machine tools, Springer. ISBN: 978-1-4419-1116-2. es_ES
dc.description.references Zhang, D., Xi, F., Mechefske, C.M., Lang, S. 2004. Analysis of parallel kinematic machine with kinetostatic modelling method. Robotics and Computer-Integrated Manufacturing 20(2) pp. 151-165. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem