- -

Reconocimiento en-línea de acciones humanas basado en patrones de RWE aplicado en ventanas dinámicas de momentos invariantes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Reconocimiento en-línea de acciones humanas basado en patrones de RWE aplicado en ventanas dinámicas de momentos invariantes

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Romero López, Dennis es_ES
dc.contributor.author Frizera Neto, Anselmo es_ES
dc.contributor.author Freire Bastos, Teodiano es_ES
dc.date.accessioned 2020-05-22T18:54:01Z
dc.date.available 2020-05-22T18:54:01Z
dc.date.issued 2014-04-13
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/144188
dc.description.abstract [EN] This paper presents a methodology for online human action recognition on video sequences. It addresses an efficient approach to use invariant moments as image descriptors, applied in processing silhouettes obtained from depth maps. A quick comparison between size-4 windows (equivalent to 4 frames) is performed by computing the Mahalanobis distance, on one of the invariant moment sequences identified as less sensitive to noise and more stable during movement absence. This approach is used for rapid detection of the idle/motion state, which allows the capture of dynamic growth intervals (windows) for further processing, rescuing from the signal contained their temporal and frequential properties. By applying the Haar wavelet transform, three decomposition levels are used for calculating Relative Wavelet Energy (RWE - Relative Wavelet Energy) and SSC (Slope Sign Change), obtaining 11-dimensional patterns. In experiments, 97 % of 4 movements online-captured were recognized correctly, and 10 movements taken from Muhavi-MAS database were recognized with 94.2 % efficiency es_ES
dc.description.abstract [ES] En este trabajo se presenta una metodología para el reconocimiento en-línea de acciones humanas en secuencias de vídeo. Se aborda un enfoque eficiente para el uso de momentos invariantes como descriptores de imagen, aplicados en siluetas obtenidas del procesamiento de mapas de profundidad. Una comparación rápida entre ventanas de tamaño 4 (equivalente a 4 frames) es realizada mediante el cómputo de la distancia de Mahalanobis, sobre una de las secuencias de momentos invariantes identificada como la menos sensible al ruido de captura y la más estable durante ausencia de movimiento. Este enfoque es usado para la detección rápida del estado de parada/movimiento, el cual permite la captura de intervalos (ventanas) de crecimiento dinámico para su posterior procesamiento, rescatando de la señal contenida sus propiedades temporales y frecuenciales. Mediante la aplicación de la transformada Wavelet Haar, tres niveles de descomposición son utilizados para el cómputo de la Energía Relativa Wavelet (RWE - Relative Wavelet Energy) y SSC (Slope Sign Change), obteniendo patrones 11-dimensionales. En experimentos realizados, el 97% de 4 movimientos capturados en-línea fueron reconocidos correctamente, y 10 movimientos tomados de la base de datos Muhavi-MAS fueron reconocidos con 94,2% de efectividad. es_ES
dc.description.sponsorship Este proyecto de investigacion es financiado por el Programa Primeros Proyectos, CNPq/FAPES No. 02/2011 y por el CNPq a traves de beca de doctorado para el primer autor. es_ES
dc.language Español es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Computer Vision es_ES
dc.subject Depth Maps es_ES
dc.subject Human Action Recognition es_ES
dc.subject Relative Wavelet Energy es_ES
dc.subject Mahalanobis Distance es_ES
dc.subject Visión por ordenador es_ES
dc.subject Mapas de profundidad es_ES
dc.subject Reconocimiento de acciones humanas es_ES
dc.subject Distancia de Mahalanobis es_ES
dc.title Reconocimiento en-línea de acciones humanas basado en patrones de RWE aplicado en ventanas dinámicas de momentos invariantes es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.riai.2013.09.009
dc.relation.projectID info:eu-repo/grantAgreement/CNPq//FAPES%2F02%2F2011/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Romero López, D.; Frizera Neto, A.; Freire Bastos, T. (2014). Reconocimiento en-línea de acciones humanas basado en patrones de RWE aplicado en ventanas dinámicas de momentos invariantes. Revista Iberoamericana de Automática e Informática industrial. 11(2):202-211. https://doi.org/10.1016/j.riai.2013.09.009 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.riai.2013.09.009 es_ES
dc.description.upvformatpinicio 202 es_ES
dc.description.upvformatpfin 211 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\9460 es_ES
dc.contributor.funder Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasil es_ES
dc.contributor.funder Fundação de Amparo à Pesquisa e Inovação do Espírito Santo, Brasil es_ES
dc.description.references Antoniou, A., 2005. Digital Signal Processing. McGraw-Hill. es_ES
dc.description.references Broggi, A., Bertozzi, M., Fascioli, A., Sechi, M., 2000. Shape-based pedestrian detection. In: Intelligent Vehicles Symposium, 2000. IV 2000. Proceedings of the IEEE. pp. 215-220. es_ES
dc.description.references Chan, T., Vese, L., feb 2001. Active contours without edges. Image Processing, IEEE Transactions on 10 (2), 266-277. es_ES
dc.description.references Chen, Q., Petriu, E., Yang, X., may 2004. A comparative study of fourier descriptors and hu's seven moment invariants for image recognition. In: Electrical and Computer Engineering, 2004. Canadian Conference on. Vol. 1. pp. 103-106 Vol.1. es_ES
dc.description.references Chockalingam, P., Pradeep, N., Birchfield, S., oct. 2009. Adaptive fragments- based tracking of non-rigid objects using level sets. In: Computer Vision, 2009 IEEE 12th International Conference on. pp. 1530-1537. es_ES
dc.description.references Cifuentes, C., Braidot, A., Rodriguez, L., Frisoli, M., Santiago, A., Frizera, A., june 2012. Development of a wearable zigbee sensor system for upper limb rehabilitation robotics. In: Biomedical Robotics and Biomechatronics (Bio- Rob), 2012 4th IEEE RAS EMBS International Conference on. pp. 1989-1994. DOI: 10.1109/BioRob.2012.6290926. es_ES
dc.description.references Franke, U., Joos, A., 2000. Real-time stereo vision for urban traffic scene understanding. In: Intelligent Vehicles Symposium. Proceedings of the IEEE. pp. 273-278. es_ES
dc.description.references Garcia-Costa, C., Egea-Lopez, E., Tomas-Gabarron, J., Garcia-Haro, J., Haas, Z., 2011. A stochastic model for chain collisions of vehicles equipped with vehicular communications. Intelligent Transportation Systems, IEEE Transactions on 13, 503-518. es_ES
dc.description.references Geronimo, D., Lopez, A., Sappa, D., july 2010. Survey of pedestrian detection for advanced driver assistance systems. Pattern Analysis and Machine Intelligence, IEEE Transactions on 32 (7), 1239-1258. es_ES
dc.description.references Gonzalez, R.C., 2010. Digital Image Processing, 2nd Edition. McGraw-Hill. es_ES
dc.description.references Grubb, G., Zelinsky, A., Nilsson, L., Rilbe, M., june 2004. 3d vision sensing for improved pedestrian safety. In: Intelligent Vehicles Symposium, IEEE. pp. 19-24. es_ES
dc.description.references Haibin, Z., Xu, W., Hong, W., may 2008. Feature selection using relative wavelet energy for brain-computer interface design. In: Bioinformatics and Biomedical Engineering, 2008. ICBBE 2008. The 2nd International Conference on. pp. 1434-1437. es_ES
dc.description.references Hu, X., Kong, B., Zheng, F., Wang, S., july 2007. Image recognition based on wavelet invariant moments and wavelet neural networks. In: Information Acquisition, 2007. ICIA ‘07. International Conference on. pp. 275-279. es_ES
dc.description.references Huang, Z., Leng, J., april 2010. Analysis of hu's moment invariants on image scaling and rotation. In: Computer Engineering and Technology (ICCET), 2010 2nd International Conference on. Vol. 7. pp. V7-476 –V7-480. es_ES
dc.description.references Itti, L., Koch, C., Niebur, E., nov 1998. A model of saliency-based visual attention for rapid scene analysis. Pattern Analysis and Machine Intelligence, IEEE Transactions on 20 (11), 1254-1259. es_ES
dc.description.references Jones, M., Snow, D., dec. 2008. Pedestrian detection using boosted features over many frames. In: Pattern Recognition, 2008. ICPR 2008. 19th International Conference on. pp. 1-4. es_ES
dc.description.references Knoll, P., 2007. Hdr vision for driver assistance. In: Hoefflinger, B. (Ed.), High- Dynamic-Range (HDR) Vision. Vol. 26. Springer, pp. 123-136. es_ES
dc.description.references Marsi, S., Impoco, G., Ukovich, A., Ramponi, G., 2007. Video enhancement and dynamic range control of hdr sequences for automotive applications. Advances in Signal Processing (EURASIP) 2007, 9. es_ES
dc.description.references Mercimek, M., Gulez, K., Mumcu, T., 2005. Real object recognition using moment invariants. Sadhna - Acad. Proc. Eng. Sci. 30, 765-775. es_ES
dc.description.references Miau, F., Papageorgiou, C.S., Itti, L., 2001. Neuromorphic algorithms for computer vision and attention. Proc.Intl Symp. Optical Science and Technology 01 (46), 12-23. es_ES
dc.description.references Moeslund, T., Kruger, V., 2006. A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding 103, 90-126. es_ES
dc.description.references Nayar, S., Branzoi, V., 2003. Adaptive dynamic range imaging: optical control of pixel exposures over space and time. In: Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on. pp. 1168-1175 vol.2. es_ES
dc.description.references Park, S., Trivedi, M., 2007. Multi-person interaction and activity analysis: a synergistic track- and body-level analysis framework. Machine Vision and Applications 18, 151-166. es_ES
dc.description.references Park, S., Trivedi, M., jul 2008. Understanding human interactions with track and body synergies (tbs) captured from multiple views. Computer Vision and Image Understanding 111 (1), 2-20. es_ES
dc.description.references Phinyomark, A., Limsakul, C., Phukpattaranont, P., 2009. A novel feature extraction for robust emg pattern recognition. CoRR abs/0912.3973. es_ES
dc.description.references Poppe, R., 2010. A survey on vision-based human action recognition. Image and Vision Computing 28 (6), 976-990. es_ES
dc.description.references Qiao, Y., Wang, X., Xu, C., june 2011. Learning mahalanobis distance for dtw based online signature verification. In: Information and Automation (ICIA), 2011 IEEE International Conference on. pp. 333-338. es_ES
dc.description.references Rabiner, L., feb 1989. A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE 77 (2), 257-286. es_ES
dc.description.references Romero, D., Frizera, A., Bastos, T., jan. 2012a. Movement analysis in learning by repetitive recall. an approach for automatic assistance in physiotherapy. In: Biosignals and Biorobotics Conference (BRC), 2012 ISSNIP. pp. 1-8. es_ES
dc.description.references Romero, D., Vintimilla, B., Frizera, A., Bastos, T.F., jun 2012b. Rwe patterns extraction for on-line human action recognition through window-based analysis of invariant moments. In: Robocontrol (2012). Bauru - SP, pp. 20-27. es_ES
dc.description.references Rosso, O., Martin, M., Plastino, A., 2003. Brain electrical activity analysis using wavelet-based informational tools (ii): Tsallis non-extensivity and complexity measures. Physica A: Statistical Mechanics and its Applications 320 (0), 497-511. es_ES
dc.description.references Rosso, O.A., Blanco, S., Yordanova, J., Kolev, V., Figliola, A., Schurmann, M., Basar, E., 2001. Wavelet entropy: a new tool for analysis of short duration brain electrical signals. Journal of Neuroscience Methods 105 (1), 65-75. es_ES
dc.description.references Salas-Lopez, G., Sandoval-Gonzalez, O., Herrera-Aguilar, I., Martà nez-Sibaja, A., Portillo-Rodriguez, O., Vilchis-Gonzalez, A., 2012. Design and development of a planar robot for upper extremities rehabilitation with visuovibrotactile feedback. Procedia Technology 3, 147-156. es_ES
dc.description.references Sarvaiya, J.N., 2011. Automatic image registration using mexican hat wavelet, invariant moment, and radon transform. IJACSA - International Journal of Advanced Computer Science and Applications 01 (Special Issue), 75-84. es_ES
dc.description.references Singh, S., Velastin, S., Ragheb, H., september 2010. Muhavi: A multicamera human action video dataset for the evaluation of action recognition methods. In: Advanced Video and Signal Based Surveillance (AVSS), 2010 Seventh IEEE International Conference on. pp. 48-55. es_ES
dc.description.references Soga, M., Kato, T., Ohta, M., Ninomiya, Y., april 2005. Pedestrian detection with stereo vision. In: Data Engineering Workshops. 21st International Conference on. Vol. 01. pp. 20-28. es_ES
dc.description.references Viola, P., Jones, M., Snow, D., oct. 2003. Detecting pedestrians using patterns of motion and appearance. In: Computer Vision, 2003. Proceedings. Ninth IEEE International Conference on. Vol. 2. pp. 734-741. es_ES
dc.description.references Wang, L., Hu, W., T. Tan, 2003. Recent developments in human motion analysis. Pattern Recognition 36, 585-601. es_ES
dc.description.references Yan, L., Casperson, D., Chen, L., june 2011. Survey: Dimension reduction by pattern decomposition. In: Modelling, Identification and Control (ICMIC), Proceedings of 2011 International Conference on. pp. 69-74. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem