- -

Modelado Energético de Convertidores Primarios para el Aprovechamiento de las Energías Renovables Marinas

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Modelado Energético de Convertidores Primarios para el Aprovechamiento de las Energías Renovables Marinas

Show full item record

López, A.; Somolinos, JA.; Núñez, LR. (2014). Modelado Energético de Convertidores Primarios para el Aprovechamiento de las Energías Renovables Marinas. Revista Iberoamericana de Automática e Informática industrial. 11(2):224-235. https://doi.org/10.1016/j.riai.2014.02.005

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144189

Files in this item

Item Metadata

Title: Modelado Energético de Convertidores Primarios para el Aprovechamiento de las Energías Renovables Marinas
Secondary Title: Energetic modelling of primary converters for marine renewable energies
Author: López, Amable Somolinos, José Andrés Núñez, Luis Ramón
Issued date:
Abstract:
[EN] The main objective of this paper is to present the most common harnessing methods for different types of renewable energy from the sea, and to analyze energy models of the devices used for their exploitation. These ...[+]


[ES] El objetivo principal de este artículo es presentar los métodos más habituales de aprovechamiento de distintos tipos de energías renovables procedentes del mar y analizar los modelos energéticos de los dispositivos ...[+]
Subjects: Marine renewable energies , Modelling and simulation , Blade element theory , Resource modelling , Point absorber , Energías renovables marinas , Modelado y simulación , Teoría del elemento de pala , Modelado del recurso , Absorbedor puntual
Copyrigths: Reserva de todos los derechos
Source:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.1016/j.riai.2014.02.005
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.riai.2014.02.005
Project ID:
info:eu-repo/grantAgreement/MICINN//DPI2011-24113/ES/CONTROL DE DISPOSITIVOS PARA EL APROVECHAMIENTO DE LA ENERGIA DE LAS CORRIENTES MARINAS/
Thanks:
Este trabajo se ha realizado con financiación parcial del Mº de Ciencia e Innovación, a través del Proyecto de Investigación Fundamental DPI2011-24113 CoDAEC (Control de Dispositivos para el Aprovechamiento de la Energía ...[+]
Type: Artículo

References

Alves, Marco and Sarmento, Antonio, 2011. Introduction to Ocean-Waves Energy Extraction. Wave-Energy Centre. Lisboa.

Aquaret, 2012. Aquaret E-Learning Tool. Leonando Da Vinci EU Program. http://www.aquaret.com.

Antehaume, Sylvain et al, 2008. Hydraulic Darrieus Efficiency for Free Fluid Flow Conditions versus Power Farm Conditions. Renewable Energy, Vol. 33, pg. 2186-2198. www.elsevier.com/locate/renene. [+]
Alves, Marco and Sarmento, Antonio, 2011. Introduction to Ocean-Waves Energy Extraction. Wave-Energy Centre. Lisboa.

Aquaret, 2012. Aquaret E-Learning Tool. Leonando Da Vinci EU Program. http://www.aquaret.com.

Antehaume, Sylvain et al, 2008. Hydraulic Darrieus Efficiency for Free Fluid Flow Conditions versus Power Farm Conditions. Renewable Energy, Vol. 33, pg. 2186-2198. www.elsevier.com/locate/renene.

Bahaj, A.S. et al, 2007. Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank. Renewable Energy, Vol. 32.

Batten, W.M.J. et al, 2008. The prediction of the hydrodynamic performance of marine current turbines. Renewable Energy, Vol. 33, pg. 1085-1096.

Beathi, Scott J., 2009. Analysis and Development of a Three Body Heaving Wave Energy Converter. MsTh. University of Victoria. BC, Canadá.

Bedard, Roger, 2008. Technology Characterization Ocean Wave and Tidal Energy. Global Marine Energy Conference. New York, USA.

Belloni, Clarissa and Willden, Richard, 2011. Flow Field and Performance Analysis of Bidirectional and Open-centre Ducted Tidal Turbines. European Wave & Tidal Energy Conference (EWTEC’11). Southampton, United Kingdom.

Ben-Elghali, S.E. et al, 2007. A Simulation Model for the Evaluation of the Electrical Power Potential Harnessed by a Marine Current Turbine. IEEE Journal of Oceanic Engineering, Vol. 32, n° 4, Octubre, 2007.

Brito, A., Huckerby, J. (editors), 2012. Ocean Energy Systems. Annual Report-2011. OES-IEA. www.iea-oceans.org.

Coiro, D.P. et al, 2005. Dynamic Behaviour of the Patented Kobold Tidal Current Turbine. Acta Polytechnica, Vol. 4, pg 77-84. Czech Technical Univertity, Praga.

de la Cruz, Jesús M. et al, 2012. Automática marina: una revisión desde el punto de vista del control. Revista Iberoamericana de Automática e Informática Industrial RIAI, Volumen 9, n°3, Julio.

EDF, 2011. Ĺusine maréomotrice del La Rance. Electrecité de France. www.energie.edf.com.

Equimar, 2011. Wave and Tidal Resource Characterisation. Proyecto EquiMar Equitable Testing and Evaluation of Marine Energy Extraction Devices in terms of Performance, Cost and Environmental Impact. Deliverable D2.2. http://www.equimar.org/equimar-project-deliverables.html.

Falnes, Johannes, 2002. Ocean Waves and Oscilating Systems. Cambridge University Press. Cambridge, United Kingdom.

Fenández D., Pedro, 2003. Mecánica de fluidos. Departamento de Ingeniería Eléctric ay Energética. Universidad de Cantabria. Santander.

Fenández D., Pedro, 2008. Energía de las Olas. http://libros.redsauce.net/.

Garrad Hassan, 2008. Development of a Design Tool for Axial Flow Tidal.

Stream Devices. Contract number T/06/00231/00/00. BERR Department, United Kingdom.

González, Miguel E. et al, 2010. Control Multivariable Centralizado con Desacoplo para Aerogeneradores de Velocidad Variable. Revista Iberoamericana de Automática e Informática Industrial RIAI, Volumen 7, n° 4, Octubre 2010.

Hardisty, Jack, 2009. The Analysis of Tidal Stream Power. Wiley-Blackwel. Chichester, United Kingdom.

Huckerby, Jhon et al, 2011. An International Vision for Ocean Energy. Version 1: October 2011. OES-IEA. www.iea-oceans.org.

IEC-TC214, 2011. Technical Specification: Marine energy. Wave, tidal and other water current converters. Part 1: Terminology. IEC/TS 62600-1Ed. 1.0 International Electrotechnic Commission. Ginebra, Suiza.

IEC-TC214, 2012. Technical Specification: Marine energy. Wave, tidal and other water current converters. Part 200: Power performance assessment of electricity producing tidal energy converters. IEC/TS 62600-200 TS Ed.1. International Electrotechnic Commission. Ginebra, Suiza.

King, J., Tryfonas, T., 2009 Tidal Stream Power Technology. State of the Art. IEEE Oceans Conference. Bremen, Alemania.

Korotkin, Alexandr I., 2009. Added Masses of Ship Structures. Springer. Serie: Fluid Mechanics and its Applications. www.springer.com/series/5.

Kurniawan, Adi et al, 2011. Assessment of Time-Domain Models of Wave Energy Conversion Systems. European Wave & Tidal Energy Conference (EWTEC’11). Southampton, United Kingdom.

Lewis, Timothy M. et al, 2011. Per-Unit Wave Energy Converter System Analysis. 2011 IEEE Energy Conversion Congress and Exposition (ECCE). Phoenix, AZ, USA.

López P., Amable et al, 2009. Modelado y Simulación de la Operación de un Generador para el Aprovechamiento de las Corrientes del Estrecho de Gibraltar. CEA. XXX Jornadas de Automática, Valladolid.

López P., Amable et al, 2010. Aplicación del Modelado Paramétrico del Comportamiento Dinámico de Estructuras Sumergidas al Generador GESMEY. Doc. interno Laboratorio de Electrotecnia, Electrónica y Sistemas. ETSIN-UPM, Madrid.

López P., Amable et al, 2011. Dynamic Behaviour of a Second Generation Hydrokinetic Converter. IEEE Oceans Conference. Santander.

López P., Amable et al, 2012. Modelado del Comportamiento de Cuerpos Sumergidos en Maniobras. CEA. XXXIII Jornadas de Automática, Vigo.

López P., Amable et al, 2013. Inertial Behavior of Offshore Devices. 5th International Workshop on Marine Technology, Gerona.

McCabe, A.P., 2004. An Appraisal of a Range of Fluid Modelling Software. Supergen-Marine Research Centre. http://www.supergen-marine.org.uk.

Mikati, M. et al, 2012. Modelado y Simulación de un Sistema Conjunto de Energía Solar y Eólica para Analizar su Dependencia de la Red Eléctrica. Revista Iberoamericana de Automática e Informática Industrial RIAI, Volumen 9, n°3, Julio 2012.

Münch, Cécile et al, 2009. Design and Performance Assessment of a Tidal Ducted Turbine. 3rd IAHR Meeting. Brno, Czech Republic.

Núñez R. Luis R. et al, 2011a. Conceptual Design of an Ocean Current Turbine for Deep Waters. 1st International Conference on Maritime Technology and Engineering (MARTECH’11), Lisboa.

Núñez R. Luis R. et al, 2011b. The GESMEY Project. Design & Development of a Second Generation TEC. 9th European Wave and Tidal Energy Conference (EWTEĆ11), Southampton, United Kingdom.

Núñez R. Luis R., 2012. El aprovechamiento de las energías renovables marinas como opción tecnológica de futuro. Revista de Economía Industrial. 4° Tr. 2012. M° Industria, Energía y Turismo.

Nunes, Guilherme et al, 2011. Modelling and Control of a Wave Energy Converter. Renewable Energy, vol. 36, pg. 1913-1921. www.elsevier.com/locate/renene.

Ortubia, Idoia et al, 2011. Implantación de una central undimotriz en el nuevo dique de abrigo al puerto de Mutriku. http://www.caminospaisvasco.com.

Revestido, Elías et al, 2012. Diseño de Experimentos para la Estimación de Parámetros de Modelos de Maniobra Lineales de Buques. Revista Iberoamericana de Automática e Informática Industrial RIAI, Volumen 9, n° 2, Abril 2012.

Ruehl, Kelley, 2011.Time-Domain Modeling of Heaving Point Absorber Wave Energy Converters, Including Power Take-Off and Mooring. MsTh. Oregon State University. OR, USA.

Sheldahl, R.E., Klimas, P.C., 1981. Aerodynamic Characteristics of Seven Symmetrical Airfofoil Sections. SAND-80-214 Report. Sandia National Laboratoies. Alburquerque, USA.

Shi, John & Wang, Yun, 2008. The Vertical Structure of Combined Wave- Current Flow. Ocean Engineering. Vol. 35 pg. 174-181. www.elsevier.com/locate/oceaneng.

Shives, M. and Crawford, C., 2010. Overall Efficiency of Ducted Tidal Current Turbines. IEEE Oceans Conference. Seattle, WA, USA.

Somolinos S. José A. et al, 2010. Automatic System for Underwater Ocean Current Turbines. Application to GESMEY. Internationa Conference on Oceanic Energies (ICOE). Bilbao.

Somolinos S. José A. et al, 2012. Control de Profundidad de Cuerpos Sumergidos Basado en Cambios de Volumen. CEA. XXXIII Jornadas de Automática, Vigo.

Stewart, Robert H., 2008. Introduction to Physical Oceanography. Texas A & M University. http://ocean.tamu.edu/.

Tomson, Jim et al, 2012. Measurements of Turbulence at Two Tidal Energy Sites in Puget Sound, WA. IEEE Journal of Ocean Engineering. Vol 37, n° 3, July.

Topper, Mathew B.R., 2010. Guidance for Numerical Modelling inWave and Tidal Energy. Supergen-Marine Research Centre. http://www.supergen-marine.org.uk.

Wait, Frank M., 2010. Fluid Mechanics. 4ª Edición. McGraw-Hill. Boston, USA.

Wilson, James F. (ed), 2003. Dynamics of Offshore Structures. John Wiley & Sons. Hoboken, NJ, USA.

Winter, Alexei, 2011. Speed Regulated Operation for Tidal Turbines with Fixed Pitch Rotors. IEEE Oceans Conference. Kona, Hawai, USA.

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record