- -

Identification of salt and drought biochemical stress markers in several Silene vulgaris populations

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


  • Estadisticas de Uso

Identification of salt and drought biochemical stress markers in several Silene vulgaris populations

Show full item record

Kozminska, A.; Wiszniewska, A.; Hanus-Fajerska, E.; Boscaiu, M.; Al Hassan, M.; Halecki, W.; Vicente, O. (2019). Identification of salt and drought biochemical stress markers in several Silene vulgaris populations. Sustainability. 11(3):1-23. https://doi.org/10.3390/su11030800

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144217

Files in this item

Item Metadata

Title: Identification of salt and drought biochemical stress markers in several Silene vulgaris populations
Author: Kozminska, Aleksandra Wiszniewska, Alina Hanus-Fajerska, Ewa Boscaiu, Monica Al Hassan, Mohamad Halecki, Wiktor Vicente, Oscar
UPV Unit: Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals
Issued date:
[EN] This study attempted to determine short-term responses to drought and salt stress in different Silene vulgaris genotypes and to identify potential abiotic stress biochemical indicators in this species. Four populations ...[+]
Subjects: Chlorophylls , Ions , Osmolytes , Populations , Salinity , Drought
Copyrigths: Reconocimiento (by)
Sustainability. (eissn: 2071-1050 )
DOI: 10.3390/su11030800
Publisher version: https://doi.org/10.3390/su11030800
Project ID:
info:eu-repo/grantAgreement/MNiSW//DS 3500%2FZBiFR-IBRiB-WBiO-UR/
This research was supported in part by the Ministry of Science and Higher Education of the Republic of Poland as DS 3500/ZBiFR-IBRiB-WBiO-UR and the Erasmus+ Program granted for Aleksandra Kozminska to complete her doctoral ...[+]
Type: Artículo


Grime, J. P. (1977). Evidence for the Existence of Three Primary Strategies in Plants and Its Relevance to Ecological and Evolutionary Theory. The American Naturalist, 111(982), 1169-1194. doi:10.1086/283244

Bartels, D., & Sunkar, R. (2005). Drought and Salt Tolerance in Plants. Critical Reviews in Plant Sciences, 24(1), 23-58. doi:10.1080/07352680590910410

Rengasamy, P. (2010). Soil processes affecting crop production in salt-affected soils. Functional Plant Biology, 37(7), 613. doi:10.1071/fp09249 [+]
Grime, J. P. (1977). Evidence for the Existence of Three Primary Strategies in Plants and Its Relevance to Ecological and Evolutionary Theory. The American Naturalist, 111(982), 1169-1194. doi:10.1086/283244

Bartels, D., & Sunkar, R. (2005). Drought and Salt Tolerance in Plants. Critical Reviews in Plant Sciences, 24(1), 23-58. doi:10.1080/07352680590910410

Rengasamy, P. (2010). Soil processes affecting crop production in salt-affected soils. Functional Plant Biology, 37(7), 613. doi:10.1071/fp09249

Rahman, M. M., Hagare, D., Maheshwari, B., & Dillon, P. (2015). Impacts of Prolonged Drought on Salt Accumulation in the Root Zone Due to Recycled Water Irrigation. Water, Air, & Soil Pollution, 226(4). doi:10.1007/s11270-015-2370-1

Martínez-Fernández, J., González-Zamora, A., Sánchez, N., Gumuzzio, A., & Herrero-Jiménez, C. M. (2016). Satellite soil moisture for agricultural drought monitoring: Assessment of the SMOS derived Soil Water Deficit Index. Remote Sensing of Environment, 177, 277-286. doi:10.1016/j.rse.2016.02.064

Laiskhanov, S., Otarov, A., Savin, I., Tanirbergenov, S., Mamutov, Z., Duisekov, S., & Zhogolev, A. (2016). Dynamics of Soil Salinity in Irrigation Areas in South Kazakhstan. Polish Journal of Environmental Studies, 25(6), 2469-2475. doi:10.15244/pjoes/61629

López-Jurado, J., Balao, F., & Mateos-Naranjo, E. (2016). Deciphering the ecophysiological traits involved during water stress acclimation and recovery of the threatened wild carnation, Dianthus inoxianus. Plant Physiology and Biochemistry, 109, 397-405. doi:10.1016/j.plaphy.2016.10.023

Lopez, J. R., Winter, J. M., Elliott, J., Ruane, A. C., Porter, C., & Hoogenboom, G. (2017). Integrating growth stage deficit irrigation into a process based crop model. Agricultural and Forest Meteorology, 243, 84-92. doi:10.1016/j.agrformet.2017.05.001

Yeh, C.-H., Kaplinsky, N. J., Hu, C., & Charng, Y. (2012). Some like it hot, some like it warm: Phenotyping to explore thermotolerance diversity. Plant Science, 195, 10-23. doi:10.1016/j.plantsci.2012.06.004

Zaher-Ara, T., Boroomand, N., & Sadat-Hosseini, M. (2016). Physiological and morphological response to drought stress in seedlings of ten citrus. Trees, 30(3), 985-993. doi:10.1007/s00468-016-1372-y

Nxele, X., Klein, A., & Ndimba, B. K. (2017). Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants. South African Journal of Botany, 108, 261-266. doi:10.1016/j.sajb.2016.11.003

Ohama, N., Sato, H., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2017). Transcriptional Regulatory Network of Plant Heat Stress Response. Trends in Plant Science, 22(1), 53-65. doi:10.1016/j.tplants.2016.08.015

Ashraf, M. (2010). Inducing drought tolerance in plants: Recent advances. Biotechnology Advances, 28(1), 169-183. doi:10.1016/j.biotechadv.2009.11.005

Fita, A., Rodríguez-Burruezo, A., Boscaiu, M., Prohens, J., & Vicente, O. (2015). Breeding and Domesticating Crops Adapted to Drought and Salinity: A New Paradigm for Increasing Food Production. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00978

Gorim, L. Y., & Vandenberg, A. (2017). Evaluation of Wild Lentil Species as Genetic Resources to Improve Drought Tolerance in Cultivated Lentil. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01129

Ariga, H., Katori, T., Yoshihara, R., Hase, Y., Nozawa, S., Narumi, I., … Taji, T. (2013). Arabidopsissos1 mutant in a salt-tolerant accession revealed an importance of salt acclimation ability in plant salt tolerance. Plant Signaling & Behavior, 8(7), e24779. doi:10.4161/psb.24779

Ben Rejeb, K., Lefebvre-De Vos, D., Le Disquet, I., Leprince, A.-S., Bordenave, M., Maldiney, R., … Savouré, A. (2015). Hydrogen peroxide produced by NADPH oxidases increases proline accumulation during salt or mannitol stress inArabidopsis thaliana. New Phytologist, 208(4), 1138-1148. doi:10.1111/nph.13550

Kumar, D., Al Hassan, M., Naranjo, M. A., Agrawal, V., Boscaiu, M., & Vicente, O. (2017). Effects of salinity and drought on growth, ionic relations, compatible solutes and activation of antioxidant systems in oleander (Nerium oleander L.). PLOS ONE, 12(9), e0185017. doi:10.1371/journal.pone.0185017

Al Hassan, M., Morosan, M., López-Gresa, M., Prohens, J., Vicente, O., & Boscaiu, M. (2016). Salinity-Induced Variation in Biochemical Markers Provides Insight into the Mechanisms of Salt Tolerance in Common (Phaseolus vulgaris) and Runner (P. coccineus) Beans. International Journal of Molecular Sciences, 17(9), 1582. doi:10.3390/ijms17091582

Alarcón, R., Ortiz, L. T., & García, P. (2006). Nutrient and fatty acid composition of wild edible bladder campion populations [Silene vulgaris (Moench.) Garcke]. International Journal of Food Science and Technology, 41(10), 1239-1242. doi:10.1111/j.1365-2621.2006.01187.x

Ceccanti, C., Landi, M., Benvenuti, S., Pardossi, A., & Guidi, L. (2018). Mediterranean Wild Edible Plants: Weeds or «New Functional Crops»? Molecules, 23(9), 2299. doi:10.3390/molecules23092299

Boari, F., Cefola, M., Di Gioia, F., Pace, B., Serio, F., & Cantore, V. (2013). Effect of cooking methods on antioxidant activity and nitrate content of selected wild Mediterranean plants. International Journal of Food Sciences and Nutrition, 64(7), 870-876. doi:10.3109/09637486.2013.799125

Disciglio, G., Tarantino, A., Frabboni, L., Gagliardi, A., Giuliani, M. M., Tarantino, E., & Gatta, G. (2017). Qualitative characterization of cultivated and wild edible plants: mineral elements, phenols content and antioxidant capacity. Italian Journal of Agronomy, 11. doi:10.4081/ija.2017.1036

Bhatt, J., Kumar, S., Patel, S., & Solanki, R. (2017). Sequence-related amplified polymorphism (SRAP) markers based genetic diversity analysis of cumin genotypes. Annals of Agrarian Science, 15(4), 434-438. doi:10.1016/j.aasci.2017.09.001

Sebasky, M. E., Keller, S. R., & Taylor, D. R. (2016). Investigating past range dynamics for a weed of cultivation, Silene vulgaris. Ecology and Evolution, 6(14), 4800-4811. doi:10.1002/ece3.2250

Schiop, S. T., Al Hassan, M., Sestras, A. F., Boscaiu, M., Sestras, R. E., & Vicente, O. (2015). Identification of Salt Stress Biomarkers in Romanian Carpathian Populations of Picea abies (L.) Karst. PLOS ONE, 10(8), e0135419. doi:10.1371/journal.pone.0135419

BRATTELER, M., LEXER, C., & WIDMER, A. (2006). Genetic architecture of traits associated with serpentine adaptation of Silene vulgaris. Journal of Evolutionary Biology, 19(4), 1149-1156. doi:10.1111/j.1420-9101.2006.01090.x

Sandner, T. M., & Matthies, D. (2017). Fluctuating asymmetry of leaves is a poor indicator of environmental stress and genetic stress by inbreeding in Silene vulgaris. Ecological Indicators, 79, 247-253. doi:10.1016/j.ecolind.2017.04.030

Wierzbicka, M., & Panufnik, D. (1998). The adaptation of Silene vulgaris to growth on a calamine waste heap (S. Poland). Environmental Pollution, 101(3), 415-426. doi:10.1016/s0269-7491(98)00012-8

VERKLEIJ, J. A. C., & PRAST, J. E. (1989). Cadmium tolerance and co-tolerance in Silene vulgaris (Moench.) Garcke [= S. cucubalus (L.) Wib.]. New Phytologist, 111(4), 637-645. doi:10.1111/j.1469-8137.1989.tb02358.x

Hanus-Fajerska, E., Czura, A., Grabski, K., & Tukaj, Z. (2009). The effect of conditioned medium obtained from Scenedesmus subspicatus on suspension culture of Silene vulgaris (Caryophyllaceae). Acta Physiologiae Plantarum, 31(5), 881-887. doi:10.1007/s11738-009-0301-8

Ernst, W. H. ., & Nelissen, H. J. . (2000). Life-cycle phases of a zinc- and cadmium-resistant ecotype of Silene vulgaris in risk assessment of polymetallic mine soils. Environmental Pollution, 107(3), 329-338. doi:10.1016/s0269-7491(99)00174-8

Baloun, J., Nevrtalova, E., Kovacova, V., Hudzieczek, V., Cegan, R., Vyskot, B., & Hobza, R. (2014). Characterization of the HMA7 gene and transcriptomic analysis of candidate genes for copper tolerance in two Silene vulgaris ecotypes. Journal of Plant Physiology, 171(13), 1188-1196. doi:10.1016/j.jplph.2014.04.014

Pradas-del-Real, A. E., García-Gonzalo, P., Alarcón, R., González-Rodríguez, A., Lobo, M. C., & Pérez-Sanz, A. (2013). Effect of genotype, Cr(III) and Cr(VI) on plant growth and micronutrient status in Silene vulgaris (Moench). Spanish Journal of Agricultural Research, 11(3), 685. doi:10.5424/sjar/2013113-3536

Pradas del Real, A. E., García-Gonzalo, P., Lobo, M. C., & Pérez-Sanz, A. (2014). Chromium speciation modifies root exudation in two genotypes of Silene vulgaris. Environmental and Experimental Botany, 107, 1-6. doi:10.1016/j.envexpbot.2014.05.002

García-Gonzalo, P., del Real, A. E. P., Lobo, M. C., & Pérez-Sanz, A. (2016). Different genotypes of Silene vulgaris (Moench) Garcke grown on chromium-contaminated soils influence root organic acid composition and rhizosphere bacterial communities. Environmental Science and Pollution Research, 24(33), 25713-25724. doi:10.1007/s11356-016-6667-4

Baker, A. J. M., Brooks, R. R., Pease, A. J., & Malaisse, F. (1983). Studies on copper and cobalt tolerance in three closely related taxa within the genusSilene L. (Caryophyllaceae) from Zaïre. Plant and Soil, 73(3), 377-385. doi:10.1007/bf02184314

Gonnelli, C., Galardi, F., & Gabbrielli, R. (2001). Nickel and copper tolerance and toxicity in three Tuscan populations of Silene paradoxa. Physiologia Plantarum, 113(4), 507-514. doi:10.1034/j.1399-3054.2001.1130409.x

PALIOURIS, G., & HUTCHINSON, T. C. (1991). Arsenic, cobalt and nickel tolerances in two populations of Silene vulgaris (Moench) Garcke from Ontario, Canada. New Phytologist, 117(3), 449-459. doi:10.1111/j.1469-8137.1991.tb00009.x

Krämer, U. (2018). Conceptualizing plant systems evolution. Current Opinion in Plant Biology, 42, 66-75. doi:10.1016/j.pbi.2018.02.008

Kozminska, A., Al Hassan, M., Hanus-Fajerska, E., Naranjo, M. A., Boscaiu, M., & Vicente, O. (2018). Comparative analysis of water deficit and salt tolerance mechanisms in Silene. South African Journal of Botany, 117, 193-206. doi:10.1016/j.sajb.2018.05.022

Weimberg, R. (1987). Solute adjustments in leaves of two species of wheat at two different stages of growth in response to salinity. Physiologia Plantarum, 70(3), 381-388. doi:10.1111/j.1399-3054.1987.tb02832.x

LICHTENTHALER, H. K., & WELLBURN, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. doi:10.1042/bst0110591

Hodges, D. M., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207(4), 604-611. doi:10.1007/s004250050524

Gil, R., Bautista, I., Boscaiu, M., Lidon, A., Wankhade, S., Sanchez, H., … Vicente, O. (2014). Responses of five Mediterranean halophytes to seasonal changes in environmental conditions. AoB PLANTS, 6(0), plu049-plu049. doi:10.1093/aobpla/plu049

Blainski, A., Lopes, G., & de Mello, J. (2013). Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L. Molecules, 18(6), 6852-6865. doi:10.3390/molecules18066852

Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. doi:10.1016/s0308-8146(98)00102-2

Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. doi:10.1007/bf00018060

DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350-356. doi:10.1021/ac60111a017

Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes*. New Phytologist, 179(4), 945-963. doi:10.1111/j.1469-8137.2008.02531.x

Gupta, B., & Huang, B. (2014). Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization. International Journal of Genomics, 2014, 1-18. doi:10.1155/2014/701596

Nardini, A., Lo Gullo, M. A., Trifilò, P., & Salleo, S. (2014). The challenge of the Mediterranean climate to plant hydraulics: Responses and adaptations. Environmental and Experimental Botany, 103, 68-79. doi:10.1016/j.envexpbot.2013.09.018

Yang, L., Fountain, J., Wang, H., Ni, X., Ji, P., Lee, R., … Guo, B. (2015). Stress Sensitivity Is Associated with Differential Accumulation of Reactive Oxygen and Nitrogen Species in Maize Genotypes with Contrasting Levels of Drought Tolerance. International Journal of Molecular Sciences, 16(10), 24791-24819. doi:10.3390/ijms161024791

Ouyang, B., Yang, T., Li, H., Zhang, L., Zhang, Y., Zhang, J., … Ye, Z. (2007). Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and microarray analysis. Journal of Experimental Botany, 58(3), 507-520. doi:10.1093/jxb/erl258

Beritognolo, I., Harfouche, A., Brilli, F., Prosperini, G., Gaudet, M., Brosche, M., … Sabatti, M. (2011). Comparative study of transcriptional and physiological responses to salinity stress in two contrasting Populus alba L. genotypes. Tree Physiology, 31(12), 1335-1355. doi:10.1093/treephys/tpr083

Ma, H., Song, L., Shu, Y., Wang, S., Niu, J., Wang, Z., … Ma, H. (2012). Comparative proteomic analysis of seedling leaves of different salt tolerant soybean genotypes. Journal of Proteomics, 75(5), 1529-1546. doi:10.1016/j.jprot.2011.11.026

Cui, D., Wu, D., Liu, J., Li, D., Xu, C., Li, S., … Zhao, L. (2015). Proteomic Analysis of Seedling Roots of Two Maize Inbred Lines That Differ Significantly in the Salt Stress Response. PLOS ONE, 10(2), e0116697. doi:10.1371/journal.pone.0116697

Widodo, Patterson, J. H., Newbigin, E., Tester, M., Bacic, A., & Roessner, U. (2009). Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. Journal of Experimental Botany, 60(14), 4089-4103. doi:10.1093/jxb/erp243

Zhao, X., Wang, W., Zhang, F., Deng, J., Li, Z., & Fu, B. (2014). Comparative Metabolite Profiling of Two Rice Genotypes with Contrasting Salt Stress Tolerance at the Seedling Stage. PLoS ONE, 9(9), e108020. doi:10.1371/journal.pone.0108020

Zhu, J.-K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66-71. doi:10.1016/s1360-1385(00)01838-0

Grossi, D., Rustioni, L., Simone Di Lorenzo, G., Failla, O., & Brancadoro, L. (2016). Water deficit effects on grapevine woody tissue pigmentations. Horticultural Science, 43(No. 4), 188-194. doi:10.17221/186/2015-hortsci

Rajakaruna, N. (2017). Lessons on Evolution from the Study of Edaphic Specialization. The Botanical Review, 84(1), 39-78. doi:10.1007/s12229-017-9193-2

Vasseur, F., Bresson, J., Wang, G., Schwab, R., & Weigel, D. (2018). Image-based methods for phenotyping growth dynamics and fitness components in Arabidopsis thaliana. Plant Methods, 14(1). doi:10.1186/s13007-018-0331-6

Andrade, E. R., Ribeiro, V. N., Azevedo, C. V. G., Chiorato, A. F., Williams, T. C. R., & Carbonell, S. A. M. (2016). Biochemical indicators of drought tolerance in the common bean (Phaseolus vulgaris L.). Euphytica, 210(2), 277-289. doi:10.1007/s10681-016-1720-4

Bacha, H., Tekaya, M., Drine, S., Guasmi, F., Touil, L., Enneb, H., … Ferchichi, A. (2017). Impact of salt stress on morpho-physiological and biochemical parameters of Solanum lycopersicum cv. Microtom leaves. South African Journal of Botany, 108, 364-369. doi:10.1016/j.sajb.2016.08.018

Sen, A., Ozturk, I., Yaycili, O., & Alikamanoglu, S. (2017). Drought Tolerance in Irradiated Wheat Mutants Studied by Genetic and Biochemical Markers. Journal of Plant Growth Regulation, 36(3), 669-679. doi:10.1007/s00344-017-9668-8

Horie, T., Karahara, I., & Katsuhara, M. (2012). Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants. Rice, 5(1). doi:10.1186/1939-8433-5-11

Baetz, U., Eisenach, C., Tohge, T., Martinoia, E., & De Angeli, A. (2016). Vacuolar Chloride Fluxes Impact Ion content and Distribution during Early Salinity Stress. Plant Physiology, pp.00183.2016. doi:10.1104/pp.16.00183

Assaha, D. V. M., Ueda, A., Saneoka, H., Al-Yahyai, R., & Yaish, M. W. (2017). The Role of Na+ and K+ Transporters in Salt Stress Adaptation in Glycophytes. Frontiers in Physiology, 8. doi:10.3389/fphys.2017.00509

Wu, H. (2018). Plant salt tolerance and Na+ sensing and transport. The Crop Journal, 6(3), 215-225. doi:10.1016/j.cj.2018.01.003

CRAIG PLETT, D., & MØLLER, I. S. (2010). Na+transport in glycophytic plants: what we know and would like to know. Plant, Cell & Environment, 33(4), 612-626. doi:10.1111/j.1365-3040.2009.02086.x

Flowers, T. J., Troke, P. F., & Yeo, A. R. (1977). The Mechanism of Salt Tolerance in Halophytes. Annual Review of Plant Physiology, 28(1), 89-121. doi:10.1146/annurev.pp.28.060177.000513

Genc, Y., Oldach, K., Taylor, J., & Lyons, G. H. (2015). Uncoupling of sodium and chloride to assist breeding for salinity tolerance in crops. New Phytologist, 210(1), 145-156. doi:10.1111/nph.13757

Greenway, H., & Munns, R. (1980). Mechanisms of Salt Tolerance in Nonhalophytes. Annual Review of Plant Physiology, 31(1), 149-190. doi:10.1146/annurev.pp.31.060180.001053

Hänsch, R., & Mendel, R. R. (2009). Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology, 12(3), 259-266. doi:10.1016/j.pbi.2009.05.006

Maathuis, F. J. (2009). Physiological functions of mineral macronutrients. Current Opinion in Plant Biology, 12(3), 250-258. doi:10.1016/j.pbi.2009.04.003

Moinuddin, & Imas, P. (2014). Potassium Uptake in Relation to Drought Tolerance of Chickpea Under Rain-Fed Conditions. Journal of Plant Nutrition, 37(7), 1120-1138. doi:10.1080/01904167.2014.881863

Zhang, X., Wu, H., Chen, L., Liu, L., & Wan, X. (2018). Maintenance of mesophyll potassium and regulation of plasma membrane H+-ATPase are associated with physiological responses of tea plants to drought and subsequent rehydration. The Crop Journal, 6(6), 611-620. doi:10.1016/j.cj.2018.06.001

Wang, M., Zheng, Q., Shen, Q., & Guo, S. (2013). The Critical Role of Potassium in Plant Stress Response. International Journal of Molecular Sciences, 14(4), 7370-7390. doi:10.3390/ijms14047370

Al Hassan, M., Chaura, J., Donat-Torres, M. P., Boscaiu, M., & Vicente, O. (2017). Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima. AoB PLANTS, 9(2). doi:10.1093/aobpla/plx009

Koźmińska, A., Al Hassan, M., Wiszniewska, A., Hanus-Fajerska, E., Boscaiu, M., & Vicente, O. (2019). Responses of succulents to drought: Comparative analysis of four Sedum (Crassulaceae) species. Scientia Horticulturae, 243, 235-242. doi:10.1016/j.scienta.2018.08.028

Nikolaeva, M. K., Maevskaya, S. N., Shugaev, A. G., & Bukhov, N. G. (2010). Effect of drought on chlorophyll content and antioxidant enzyme activities in leaves of three wheat cultivars varying in productivity. Russian Journal of Plant Physiology, 57(1), 87-95. doi:10.1134/s1021443710010127

Del Rio, D., Stewart, A. J., & Pellegrini, N. (2005). A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases, 15(4), 316-328. doi:10.1016/j.numecd.2005.05.003

Cheynier, V., Comte, G., Davies, K. M., Lattanzio, V., & Martens, S. (2013). Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiology and Biochemistry, 72, 1-20. doi:10.1016/j.plaphy.2013.05.009

Di Ferdinando, M., Brunetti, C., Agati, G., & Tattini, M. (2014). Multiple functions of polyphenols in plants inhabiting unfavorable Mediterranean areas. Environmental and Experimental Botany, 103, 107-116. doi:10.1016/j.envexpbot.2013.09.012

Bautista, I., Boscaiu, M., Lidón, A., Llinares, J. V., Lull, C., Donat, M. P., … Vicente, O. (2015). Environmentally induced changes in antioxidant phenolic compounds levels in wild plants. Acta Physiologiae Plantarum, 38(1). doi:10.1007/s11738-015-2025-2

Falcinelli, B., Sileoni, V., Marconi, O., Perretti, G., Quinet, M., Lutts, S., & Benincasa, P. (2017). Germination under Moderate Salinity Increases Phenolic Content and Antioxidant Activity in Rapeseed (Brassica napus var oleifera Del.) Sprouts. Molecules, 22(8), 1377. doi:10.3390/molecules22081377

Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59(1), 651-681. doi:10.1146/annurev.arplant.59.032607.092911

Hasegawa, P. M., Bressan, R. A., Zhu, J.-K., & Bohnert, H. J. (2000). PLANTCELLULAR ANDMOLECULARRESPONSES TOHIGHSALINITY. Annual Review of Plant Physiology and Plant Molecular Biology, 51(1), 463-499. doi:10.1146/annurev.arplant.51.1.463

Chaves, M. M., Flexas, J., & Pinheiro, C. (2008). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103(4), 551-560. doi:10.1093/aob/mcn125

Rabbani, G., & Choi, I. (2018). Roles of osmolytes in protein folding and aggregation in cells and their biotechnological applications. International Journal of Biological Macromolecules, 109, 483-491. doi:10.1016/j.ijbiomac.2017.12.100

Ruiz-Lozano, J. M. (2003). Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza, 13(6), 309-317. doi:10.1007/s00572-003-0237-6

Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206-216. doi:10.1016/j.envexpbot.2005.12.006

Cvikrová, M., Gemperlová, L., Martincová, O., & Vanková, R. (2013). Effect of drought and combined drought and heat stress on polyamine metabolism in proline-over-producing tobacco plants. Plant Physiology and Biochemistry, 73, 7-15. doi:10.1016/j.plaphy.2013.08.005

Per, T. S., Khan, N. A., Reddy, P. S., Masood, A., Hasanuzzaman, M., Khan, M. I. R., & Anjum, N. A. (2017). Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics. Plant Physiology and Biochemistry, 115, 126-140. doi:10.1016/j.plaphy.2017.03.018

Vera-Hernández, P., Ortega-Ramírez, M. A., Martínez Nuñez, M., Ruiz-Rivas, M., & Rosas-Cárdenas, F. de F. (2018). Proline as a probable biomarker of cold stress tolerance in Sorghum (Sorghum bicolor). Mexican Journal of Biotechnology, 3(3), 77-86. doi:10.29267/mxjb.2018.3.3.77

Al Hassan, M., Pacurar, A., López-Gresa, M. P., Donat-Torres, M. P., Llinares, J. V., Boscaiu, M., & Vicente, O. (2016). Effects of Salt Stress on Three Ecologically Distinct Plantago Species. PLOS ONE, 11(8), e0160236. doi:10.1371/journal.pone.0160236

Salehi, A., Tasdighi, H., & Gholamhoseini, M. (2016). Evaluation of proline, chlorophyll, soluble sugar content and uptake of nutrients in the German chamomile (Matricaria chamomilla L.) under drought stress and organic fertilizer treatments. Asian Pacific Journal of Tropical Biomedicine, 6(10), 886-891. doi:10.1016/j.apjtb.2016.08.009

Karimi, M., Ahmadi, A., Hashemi, J., Abbasi, A., Tavarini, S., Guglielminetti, L., & Angelini, L. G. (2015). The effect of soil moisture depletion on Stevia (Stevia rebaudiana Bertoni) grown in greenhouse conditions: Growth, steviol glycosides content, soluble sugars and total antioxidant capacity. Scientia Horticulturae, 183, 93-99. doi:10.1016/j.scienta.2014.11.001




This item appears in the following Collection(s)

Show full item record