- -

Identification of salt and drought biochemical stress markers in several Silene vulgaris populations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Identification of salt and drought biochemical stress markers in several Silene vulgaris populations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Kozminska, Aleksandra es_ES
dc.contributor.author Wiszniewska, Alina es_ES
dc.contributor.author Hanus-Fajerska, Ewa es_ES
dc.contributor.author Boscaiu, Monica es_ES
dc.contributor.author Al Hassan, Mohamad es_ES
dc.contributor.author Halecki, Wiktor es_ES
dc.contributor.author Vicente, Oscar es_ES
dc.date.accessioned 2020-05-23T03:01:08Z
dc.date.available 2020-05-23T03:01:08Z
dc.date.issued 2019-02-03 es_ES
dc.identifier.uri http://hdl.handle.net/10251/144217
dc.description.abstract [EN] This study attempted to determine short-term responses to drought and salt stress in different Silene vulgaris genotypes and to identify potential abiotic stress biochemical indicators in this species. Four populations from contrasting habitats were subjected to drought and three levels of salinity under controlled greenhouse conditions. The determination of several growth parameters after the stress treatments allowed for ranking the tolerance to stress of the four analyzed populations on the basis of their relative degree of stress-induced growth inhibition. This was then correlated with changes in the leaf levels of monovalent ions (Na+, Cl-, and K+), photosynthetic pigments (chlorophylls a and b, carotenoids), osmolytes (total soluble sugars, proline), and non-enzymatic antioxidants (total phenolic compounds and flavonoids). Despite the observed differences, all four populations appeared to be relatively tolerant to both stress conditions, which in general did not cause a significant degradation of photosynthetic pigments and did not generate oxidative stress in the plants. Drought and salinity tolerance in S. vulgaris was mostly dependent on the use of Na+ and K+ for osmotic adjustment under stress, a mechanism that appeared to be constitutive, and not stress-induced, since relatively high concentrations of these cations (without reaching toxic levels) were also present in the leaves of control plants. The inhibition of additional transportation of toxic ions to the leaves, in response to increasing external salinity, seemed to be a relevant mechanism of tolerance, specifically to salt stress, whereas accumulation of soluble sugars under drought conditions may have contributed to tolerance to drought. es_ES
dc.description.sponsorship This research was supported in part by the Ministry of Science and Higher Education of the Republic of Poland as DS 3500/ZBiFR-IBRiB-WBiO-UR and the Erasmus+ Program granted for Aleksandra Kozminska to complete her doctoral studies. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sustainability es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Chlorophylls es_ES
dc.subject Ions es_ES
dc.subject Osmolytes es_ES
dc.subject Populations es_ES
dc.subject Salinity es_ES
dc.subject Drought es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.subject.classification BOTANICA es_ES
dc.title Identification of salt and drought biochemical stress markers in several Silene vulgaris populations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/su11030800 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MNiSW//DS 3500%2FZBiFR-IBRiB-WBiO-UR/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals es_ES
dc.description.bibliographicCitation Kozminska, A.; Wiszniewska, A.; Hanus-Fajerska, E.; Boscaiu, M.; Al Hassan, M.; Halecki, W.; Vicente, O. (2019). Identification of salt and drought biochemical stress markers in several Silene vulgaris populations. Sustainability. 11(3):1-23. https://doi.org/10.3390/su11030800 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/su11030800 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 23 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 2071-1050 es_ES
dc.relation.pasarela S\378268 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministry of Science and Higher Education, Polonia es_ES
dc.description.references Grime, J. P. (1977). Evidence for the Existence of Three Primary Strategies in Plants and Its Relevance to Ecological and Evolutionary Theory. The American Naturalist, 111(982), 1169-1194. doi:10.1086/283244 es_ES
dc.description.references Bartels, D., & Sunkar, R. (2005). Drought and Salt Tolerance in Plants. Critical Reviews in Plant Sciences, 24(1), 23-58. doi:10.1080/07352680590910410 es_ES
dc.description.references Rengasamy, P. (2010). Soil processes affecting crop production in salt-affected soils. Functional Plant Biology, 37(7), 613. doi:10.1071/fp09249 es_ES
dc.description.references Rahman, M. M., Hagare, D., Maheshwari, B., & Dillon, P. (2015). Impacts of Prolonged Drought on Salt Accumulation in the Root Zone Due to Recycled Water Irrigation. Water, Air, & Soil Pollution, 226(4). doi:10.1007/s11270-015-2370-1 es_ES
dc.description.references Martínez-Fernández, J., González-Zamora, A., Sánchez, N., Gumuzzio, A., & Herrero-Jiménez, C. M. (2016). Satellite soil moisture for agricultural drought monitoring: Assessment of the SMOS derived Soil Water Deficit Index. Remote Sensing of Environment, 177, 277-286. doi:10.1016/j.rse.2016.02.064 es_ES
dc.description.references Laiskhanov, S., Otarov, A., Savin, I., Tanirbergenov, S., Mamutov, Z., Duisekov, S., & Zhogolev, A. (2016). Dynamics of Soil Salinity in Irrigation Areas in South Kazakhstan. Polish Journal of Environmental Studies, 25(6), 2469-2475. doi:10.15244/pjoes/61629 es_ES
dc.description.references López-Jurado, J., Balao, F., & Mateos-Naranjo, E. (2016). Deciphering the ecophysiological traits involved during water stress acclimation and recovery of the threatened wild carnation, Dianthus inoxianus. Plant Physiology and Biochemistry, 109, 397-405. doi:10.1016/j.plaphy.2016.10.023 es_ES
dc.description.references Lopez, J. R., Winter, J. M., Elliott, J., Ruane, A. C., Porter, C., & Hoogenboom, G. (2017). Integrating growth stage deficit irrigation into a process based crop model. Agricultural and Forest Meteorology, 243, 84-92. doi:10.1016/j.agrformet.2017.05.001 es_ES
dc.description.references Yeh, C.-H., Kaplinsky, N. J., Hu, C., & Charng, Y. (2012). Some like it hot, some like it warm: Phenotyping to explore thermotolerance diversity. Plant Science, 195, 10-23. doi:10.1016/j.plantsci.2012.06.004 es_ES
dc.description.references Zaher-Ara, T., Boroomand, N., & Sadat-Hosseini, M. (2016). Physiological and morphological response to drought stress in seedlings of ten citrus. Trees, 30(3), 985-993. doi:10.1007/s00468-016-1372-y es_ES
dc.description.references Nxele, X., Klein, A., & Ndimba, B. K. (2017). Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants. South African Journal of Botany, 108, 261-266. doi:10.1016/j.sajb.2016.11.003 es_ES
dc.description.references Ohama, N., Sato, H., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2017). Transcriptional Regulatory Network of Plant Heat Stress Response. Trends in Plant Science, 22(1), 53-65. doi:10.1016/j.tplants.2016.08.015 es_ES
dc.description.references Ashraf, M. (2010). Inducing drought tolerance in plants: Recent advances. Biotechnology Advances, 28(1), 169-183. doi:10.1016/j.biotechadv.2009.11.005 es_ES
dc.description.references Fita, A., Rodríguez-Burruezo, A., Boscaiu, M., Prohens, J., & Vicente, O. (2015). Breeding and Domesticating Crops Adapted to Drought and Salinity: A New Paradigm for Increasing Food Production. Frontiers in Plant Science, 6. doi:10.3389/fpls.2015.00978 es_ES
dc.description.references Gorim, L. Y., & Vandenberg, A. (2017). Evaluation of Wild Lentil Species as Genetic Resources to Improve Drought Tolerance in Cultivated Lentil. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01129 es_ES
dc.description.references Ariga, H., Katori, T., Yoshihara, R., Hase, Y., Nozawa, S., Narumi, I., … Taji, T. (2013). Arabidopsissos1 mutant in a salt-tolerant accession revealed an importance of salt acclimation ability in plant salt tolerance. Plant Signaling & Behavior, 8(7), e24779. doi:10.4161/psb.24779 es_ES
dc.description.references Ben Rejeb, K., Lefebvre-De Vos, D., Le Disquet, I., Leprince, A.-S., Bordenave, M., Maldiney, R., … Savouré, A. (2015). Hydrogen peroxide produced by NADPH oxidases increases proline accumulation during salt or mannitol stress inArabidopsis thaliana. New Phytologist, 208(4), 1138-1148. doi:10.1111/nph.13550 es_ES
dc.description.references Kumar, D., Al Hassan, M., Naranjo, M. A., Agrawal, V., Boscaiu, M., & Vicente, O. (2017). Effects of salinity and drought on growth, ionic relations, compatible solutes and activation of antioxidant systems in oleander (Nerium oleander L.). PLOS ONE, 12(9), e0185017. doi:10.1371/journal.pone.0185017 es_ES
dc.description.references Al Hassan, M., Morosan, M., López-Gresa, M., Prohens, J., Vicente, O., & Boscaiu, M. (2016). Salinity-Induced Variation in Biochemical Markers Provides Insight into the Mechanisms of Salt Tolerance in Common (Phaseolus vulgaris) and Runner (P. coccineus) Beans. International Journal of Molecular Sciences, 17(9), 1582. doi:10.3390/ijms17091582 es_ES
dc.description.references Alarcón, R., Ortiz, L. T., & García, P. (2006). Nutrient and fatty acid composition of wild edible bladder campion populations [Silene vulgaris (Moench.) Garcke]. International Journal of Food Science and Technology, 41(10), 1239-1242. doi:10.1111/j.1365-2621.2006.01187.x es_ES
dc.description.references Ceccanti, C., Landi, M., Benvenuti, S., Pardossi, A., & Guidi, L. (2018). Mediterranean Wild Edible Plants: Weeds or «New Functional Crops»? Molecules, 23(9), 2299. doi:10.3390/molecules23092299 es_ES
dc.description.references Boari, F., Cefola, M., Di Gioia, F., Pace, B., Serio, F., & Cantore, V. (2013). Effect of cooking methods on antioxidant activity and nitrate content of selected wild Mediterranean plants. International Journal of Food Sciences and Nutrition, 64(7), 870-876. doi:10.3109/09637486.2013.799125 es_ES
dc.description.references Disciglio, G., Tarantino, A., Frabboni, L., Gagliardi, A., Giuliani, M. M., Tarantino, E., & Gatta, G. (2017). Qualitative characterization of cultivated and wild edible plants: mineral elements, phenols content and antioxidant capacity. Italian Journal of Agronomy, 11. doi:10.4081/ija.2017.1036 es_ES
dc.description.references Bhatt, J., Kumar, S., Patel, S., & Solanki, R. (2017). Sequence-related amplified polymorphism (SRAP) markers based genetic diversity analysis of cumin genotypes. Annals of Agrarian Science, 15(4), 434-438. doi:10.1016/j.aasci.2017.09.001 es_ES
dc.description.references Sebasky, M. E., Keller, S. R., & Taylor, D. R. (2016). Investigating past range dynamics for a weed of cultivation, Silene vulgaris. Ecology and Evolution, 6(14), 4800-4811. doi:10.1002/ece3.2250 es_ES
dc.description.references Schiop, S. T., Al Hassan, M., Sestras, A. F., Boscaiu, M., Sestras, R. E., & Vicente, O. (2015). Identification of Salt Stress Biomarkers in Romanian Carpathian Populations of Picea abies (L.) Karst. PLOS ONE, 10(8), e0135419. doi:10.1371/journal.pone.0135419 es_ES
dc.description.references BRATTELER, M., LEXER, C., & WIDMER, A. (2006). Genetic architecture of traits associated with serpentine adaptation of Silene vulgaris. Journal of Evolutionary Biology, 19(4), 1149-1156. doi:10.1111/j.1420-9101.2006.01090.x es_ES
dc.description.references Sandner, T. M., & Matthies, D. (2017). Fluctuating asymmetry of leaves is a poor indicator of environmental stress and genetic stress by inbreeding in Silene vulgaris. Ecological Indicators, 79, 247-253. doi:10.1016/j.ecolind.2017.04.030 es_ES
dc.description.references Wierzbicka, M., & Panufnik, D. (1998). The adaptation of Silene vulgaris to growth on a calamine waste heap (S. Poland). Environmental Pollution, 101(3), 415-426. doi:10.1016/s0269-7491(98)00012-8 es_ES
dc.description.references VERKLEIJ, J. A. C., & PRAST, J. E. (1989). Cadmium tolerance and co-tolerance in Silene vulgaris (Moench.) Garcke [= S. cucubalus (L.) Wib.]. New Phytologist, 111(4), 637-645. doi:10.1111/j.1469-8137.1989.tb02358.x es_ES
dc.description.references Hanus-Fajerska, E., Czura, A., Grabski, K., & Tukaj, Z. (2009). The effect of conditioned medium obtained from Scenedesmus subspicatus on suspension culture of Silene vulgaris (Caryophyllaceae). Acta Physiologiae Plantarum, 31(5), 881-887. doi:10.1007/s11738-009-0301-8 es_ES
dc.description.references Ernst, W. H. ., & Nelissen, H. J. . (2000). Life-cycle phases of a zinc- and cadmium-resistant ecotype of Silene vulgaris in risk assessment of polymetallic mine soils. Environmental Pollution, 107(3), 329-338. doi:10.1016/s0269-7491(99)00174-8 es_ES
dc.description.references Baloun, J., Nevrtalova, E., Kovacova, V., Hudzieczek, V., Cegan, R., Vyskot, B., & Hobza, R. (2014). Characterization of the HMA7 gene and transcriptomic analysis of candidate genes for copper tolerance in two Silene vulgaris ecotypes. Journal of Plant Physiology, 171(13), 1188-1196. doi:10.1016/j.jplph.2014.04.014 es_ES
dc.description.references Pradas-del-Real, A. E., García-Gonzalo, P., Alarcón, R., González-Rodríguez, A., Lobo, M. C., & Pérez-Sanz, A. (2013). Effect of genotype, Cr(III) and Cr(VI) on plant growth and micronutrient status in Silene vulgaris (Moench). Spanish Journal of Agricultural Research, 11(3), 685. doi:10.5424/sjar/2013113-3536 es_ES
dc.description.references Pradas del Real, A. E., García-Gonzalo, P., Lobo, M. C., & Pérez-Sanz, A. (2014). Chromium speciation modifies root exudation in two genotypes of Silene vulgaris. Environmental and Experimental Botany, 107, 1-6. doi:10.1016/j.envexpbot.2014.05.002 es_ES
dc.description.references García-Gonzalo, P., del Real, A. E. P., Lobo, M. C., & Pérez-Sanz, A. (2016). Different genotypes of Silene vulgaris (Moench) Garcke grown on chromium-contaminated soils influence root organic acid composition and rhizosphere bacterial communities. Environmental Science and Pollution Research, 24(33), 25713-25724. doi:10.1007/s11356-016-6667-4 es_ES
dc.description.references Baker, A. J. M., Brooks, R. R., Pease, A. J., & Malaisse, F. (1983). Studies on copper and cobalt tolerance in three closely related taxa within the genusSilene L. (Caryophyllaceae) from Zaïre. Plant and Soil, 73(3), 377-385. doi:10.1007/bf02184314 es_ES
dc.description.references Gonnelli, C., Galardi, F., & Gabbrielli, R. (2001). Nickel and copper tolerance and toxicity in three Tuscan populations of Silene paradoxa. Physiologia Plantarum, 113(4), 507-514. doi:10.1034/j.1399-3054.2001.1130409.x es_ES
dc.description.references PALIOURIS, G., & HUTCHINSON, T. C. (1991). Arsenic, cobalt and nickel tolerances in two populations of Silene vulgaris (Moench) Garcke from Ontario, Canada. New Phytologist, 117(3), 449-459. doi:10.1111/j.1469-8137.1991.tb00009.x es_ES
dc.description.references Krämer, U. (2018). Conceptualizing plant systems evolution. Current Opinion in Plant Biology, 42, 66-75. doi:10.1016/j.pbi.2018.02.008 es_ES
dc.description.references Kozminska, A., Al Hassan, M., Hanus-Fajerska, E., Naranjo, M. A., Boscaiu, M., & Vicente, O. (2018). Comparative analysis of water deficit and salt tolerance mechanisms in Silene. South African Journal of Botany, 117, 193-206. doi:10.1016/j.sajb.2018.05.022 es_ES
dc.description.references Weimberg, R. (1987). Solute adjustments in leaves of two species of wheat at two different stages of growth in response to salinity. Physiologia Plantarum, 70(3), 381-388. doi:10.1111/j.1399-3054.1987.tb02832.x es_ES
dc.description.references LICHTENTHALER, H. K., & WELLBURN, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. doi:10.1042/bst0110591 es_ES
dc.description.references Hodges, D. M., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207(4), 604-611. doi:10.1007/s004250050524 es_ES
dc.description.references Gil, R., Bautista, I., Boscaiu, M., Lidon, A., Wankhade, S., Sanchez, H., … Vicente, O. (2014). Responses of five Mediterranean halophytes to seasonal changes in environmental conditions. AoB PLANTS, 6(0), plu049-plu049. doi:10.1093/aobpla/plu049 es_ES
dc.description.references Blainski, A., Lopes, G., & de Mello, J. (2013). Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L. Molecules, 18(6), 6852-6865. doi:10.3390/molecules18066852 es_ES
dc.description.references Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. doi:10.1016/s0308-8146(98)00102-2 es_ES
dc.description.references Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. doi:10.1007/bf00018060 es_ES
dc.description.references DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350-356. doi:10.1021/ac60111a017 es_ES
dc.description.references Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes*. New Phytologist, 179(4), 945-963. doi:10.1111/j.1469-8137.2008.02531.x es_ES
dc.description.references Gupta, B., & Huang, B. (2014). Mechanism of Salinity Tolerance in Plants: Physiological, Biochemical, and Molecular Characterization. International Journal of Genomics, 2014, 1-18. doi:10.1155/2014/701596 es_ES
dc.description.references Nardini, A., Lo Gullo, M. A., Trifilò, P., & Salleo, S. (2014). The challenge of the Mediterranean climate to plant hydraulics: Responses and adaptations. Environmental and Experimental Botany, 103, 68-79. doi:10.1016/j.envexpbot.2013.09.018 es_ES
dc.description.references Yang, L., Fountain, J., Wang, H., Ni, X., Ji, P., Lee, R., … Guo, B. (2015). Stress Sensitivity Is Associated with Differential Accumulation of Reactive Oxygen and Nitrogen Species in Maize Genotypes with Contrasting Levels of Drought Tolerance. International Journal of Molecular Sciences, 16(10), 24791-24819. doi:10.3390/ijms161024791 es_ES
dc.description.references Ouyang, B., Yang, T., Li, H., Zhang, L., Zhang, Y., Zhang, J., … Ye, Z. (2007). Identification of early salt stress response genes in tomato root by suppression subtractive hybridization and microarray analysis. Journal of Experimental Botany, 58(3), 507-520. doi:10.1093/jxb/erl258 es_ES
dc.description.references Beritognolo, I., Harfouche, A., Brilli, F., Prosperini, G., Gaudet, M., Brosche, M., … Sabatti, M. (2011). Comparative study of transcriptional and physiological responses to salinity stress in two contrasting Populus alba L. genotypes. Tree Physiology, 31(12), 1335-1355. doi:10.1093/treephys/tpr083 es_ES
dc.description.references Ma, H., Song, L., Shu, Y., Wang, S., Niu, J., Wang, Z., … Ma, H. (2012). Comparative proteomic analysis of seedling leaves of different salt tolerant soybean genotypes. Journal of Proteomics, 75(5), 1529-1546. doi:10.1016/j.jprot.2011.11.026 es_ES
dc.description.references Cui, D., Wu, D., Liu, J., Li, D., Xu, C., Li, S., … Zhao, L. (2015). Proteomic Analysis of Seedling Roots of Two Maize Inbred Lines That Differ Significantly in the Salt Stress Response. PLOS ONE, 10(2), e0116697. doi:10.1371/journal.pone.0116697 es_ES
dc.description.references Widodo, Patterson, J. H., Newbigin, E., Tester, M., Bacic, A., & Roessner, U. (2009). Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance. Journal of Experimental Botany, 60(14), 4089-4103. doi:10.1093/jxb/erp243 es_ES
dc.description.references Zhao, X., Wang, W., Zhang, F., Deng, J., Li, Z., & Fu, B. (2014). Comparative Metabolite Profiling of Two Rice Genotypes with Contrasting Salt Stress Tolerance at the Seedling Stage. PLoS ONE, 9(9), e108020. doi:10.1371/journal.pone.0108020 es_ES
dc.description.references Zhu, J.-K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66-71. doi:10.1016/s1360-1385(00)01838-0 es_ES
dc.description.references Grossi, D., Rustioni, L., Simone Di Lorenzo, G., Failla, O., & Brancadoro, L. (2016). Water deficit effects on grapevine woody tissue pigmentations. Horticultural Science, 43(No. 4), 188-194. doi:10.17221/186/2015-hortsci es_ES
dc.description.references Rajakaruna, N. (2017). Lessons on Evolution from the Study of Edaphic Specialization. The Botanical Review, 84(1), 39-78. doi:10.1007/s12229-017-9193-2 es_ES
dc.description.references Vasseur, F., Bresson, J., Wang, G., Schwab, R., & Weigel, D. (2018). Image-based methods for phenotyping growth dynamics and fitness components in Arabidopsis thaliana. Plant Methods, 14(1). doi:10.1186/s13007-018-0331-6 es_ES
dc.description.references Andrade, E. R., Ribeiro, V. N., Azevedo, C. V. G., Chiorato, A. F., Williams, T. C. R., & Carbonell, S. A. M. (2016). Biochemical indicators of drought tolerance in the common bean (Phaseolus vulgaris L.). Euphytica, 210(2), 277-289. doi:10.1007/s10681-016-1720-4 es_ES
dc.description.references Bacha, H., Tekaya, M., Drine, S., Guasmi, F., Touil, L., Enneb, H., … Ferchichi, A. (2017). Impact of salt stress on morpho-physiological and biochemical parameters of Solanum lycopersicum cv. Microtom leaves. South African Journal of Botany, 108, 364-369. doi:10.1016/j.sajb.2016.08.018 es_ES
dc.description.references Sen, A., Ozturk, I., Yaycili, O., & Alikamanoglu, S. (2017). Drought Tolerance in Irradiated Wheat Mutants Studied by Genetic and Biochemical Markers. Journal of Plant Growth Regulation, 36(3), 669-679. doi:10.1007/s00344-017-9668-8 es_ES
dc.description.references Horie, T., Karahara, I., & Katsuhara, M. (2012). Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants. Rice, 5(1). doi:10.1186/1939-8433-5-11 es_ES
dc.description.references Baetz, U., Eisenach, C., Tohge, T., Martinoia, E., & De Angeli, A. (2016). Vacuolar Chloride Fluxes Impact Ion content and Distribution during Early Salinity Stress. Plant Physiology, pp.00183.2016. doi:10.1104/pp.16.00183 es_ES
dc.description.references Assaha, D. V. M., Ueda, A., Saneoka, H., Al-Yahyai, R., & Yaish, M. W. (2017). The Role of Na+ and K+ Transporters in Salt Stress Adaptation in Glycophytes. Frontiers in Physiology, 8. doi:10.3389/fphys.2017.00509 es_ES
dc.description.references Wu, H. (2018). Plant salt tolerance and Na+ sensing and transport. The Crop Journal, 6(3), 215-225. doi:10.1016/j.cj.2018.01.003 es_ES
dc.description.references CRAIG PLETT, D., & MØLLER, I. S. (2010). Na+transport in glycophytic plants: what we know and would like to know. Plant, Cell & Environment, 33(4), 612-626. doi:10.1111/j.1365-3040.2009.02086.x es_ES
dc.description.references Flowers, T. J., Troke, P. F., & Yeo, A. R. (1977). The Mechanism of Salt Tolerance in Halophytes. Annual Review of Plant Physiology, 28(1), 89-121. doi:10.1146/annurev.pp.28.060177.000513 es_ES
dc.description.references Genc, Y., Oldach, K., Taylor, J., & Lyons, G. H. (2015). Uncoupling of sodium and chloride to assist breeding for salinity tolerance in crops. New Phytologist, 210(1), 145-156. doi:10.1111/nph.13757 es_ES
dc.description.references Greenway, H., & Munns, R. (1980). Mechanisms of Salt Tolerance in Nonhalophytes. Annual Review of Plant Physiology, 31(1), 149-190. doi:10.1146/annurev.pp.31.060180.001053 es_ES
dc.description.references Hänsch, R., & Mendel, R. R. (2009). Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology, 12(3), 259-266. doi:10.1016/j.pbi.2009.05.006 es_ES
dc.description.references Maathuis, F. J. (2009). Physiological functions of mineral macronutrients. Current Opinion in Plant Biology, 12(3), 250-258. doi:10.1016/j.pbi.2009.04.003 es_ES
dc.description.references Moinuddin, & Imas, P. (2014). Potassium Uptake in Relation to Drought Tolerance of Chickpea Under Rain-Fed Conditions. Journal of Plant Nutrition, 37(7), 1120-1138. doi:10.1080/01904167.2014.881863 es_ES
dc.description.references Zhang, X., Wu, H., Chen, L., Liu, L., & Wan, X. (2018). Maintenance of mesophyll potassium and regulation of plasma membrane H+-ATPase are associated with physiological responses of tea plants to drought and subsequent rehydration. The Crop Journal, 6(6), 611-620. doi:10.1016/j.cj.2018.06.001 es_ES
dc.description.references Wang, M., Zheng, Q., Shen, Q., & Guo, S. (2013). The Critical Role of Potassium in Plant Stress Response. International Journal of Molecular Sciences, 14(4), 7370-7390. doi:10.3390/ijms14047370 es_ES
dc.description.references Al Hassan, M., Chaura, J., Donat-Torres, M. P., Boscaiu, M., & Vicente, O. (2017). Antioxidant responses under salinity and drought in three closely related wild monocots with different ecological optima. AoB PLANTS, 9(2). doi:10.1093/aobpla/plx009 es_ES
dc.description.references Koźmińska, A., Al Hassan, M., Wiszniewska, A., Hanus-Fajerska, E., Boscaiu, M., & Vicente, O. (2019). Responses of succulents to drought: Comparative analysis of four Sedum (Crassulaceae) species. Scientia Horticulturae, 243, 235-242. doi:10.1016/j.scienta.2018.08.028 es_ES
dc.description.references Nikolaeva, M. K., Maevskaya, S. N., Shugaev, A. G., & Bukhov, N. G. (2010). Effect of drought on chlorophyll content and antioxidant enzyme activities in leaves of three wheat cultivars varying in productivity. Russian Journal of Plant Physiology, 57(1), 87-95. doi:10.1134/s1021443710010127 es_ES
dc.description.references Del Rio, D., Stewart, A. J., & Pellegrini, N. (2005). A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases, 15(4), 316-328. doi:10.1016/j.numecd.2005.05.003 es_ES
dc.description.references Cheynier, V., Comte, G., Davies, K. M., Lattanzio, V., & Martens, S. (2013). Plant phenolics: Recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiology and Biochemistry, 72, 1-20. doi:10.1016/j.plaphy.2013.05.009 es_ES
dc.description.references Di Ferdinando, M., Brunetti, C., Agati, G., & Tattini, M. (2014). Multiple functions of polyphenols in plants inhabiting unfavorable Mediterranean areas. Environmental and Experimental Botany, 103, 107-116. doi:10.1016/j.envexpbot.2013.09.012 es_ES
dc.description.references Bautista, I., Boscaiu, M., Lidón, A., Llinares, J. V., Lull, C., Donat, M. P., … Vicente, O. (2015). Environmentally induced changes in antioxidant phenolic compounds levels in wild plants. Acta Physiologiae Plantarum, 38(1). doi:10.1007/s11738-015-2025-2 es_ES
dc.description.references Falcinelli, B., Sileoni, V., Marconi, O., Perretti, G., Quinet, M., Lutts, S., & Benincasa, P. (2017). Germination under Moderate Salinity Increases Phenolic Content and Antioxidant Activity in Rapeseed (Brassica napus var oleifera Del.) Sprouts. Molecules, 22(8), 1377. doi:10.3390/molecules22081377 es_ES
dc.description.references Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59(1), 651-681. doi:10.1146/annurev.arplant.59.032607.092911 es_ES
dc.description.references Hasegawa, P. M., Bressan, R. A., Zhu, J.-K., & Bohnert, H. J. (2000). PLANTCELLULAR ANDMOLECULARRESPONSES TOHIGHSALINITY. Annual Review of Plant Physiology and Plant Molecular Biology, 51(1), 463-499. doi:10.1146/annurev.arplant.51.1.463 es_ES
dc.description.references Chaves, M. M., Flexas, J., & Pinheiro, C. (2008). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of Botany, 103(4), 551-560. doi:10.1093/aob/mcn125 es_ES
dc.description.references Rabbani, G., & Choi, I. (2018). Roles of osmolytes in protein folding and aggregation in cells and their biotechnological applications. International Journal of Biological Macromolecules, 109, 483-491. doi:10.1016/j.ijbiomac.2017.12.100 es_ES
dc.description.references Ruiz-Lozano, J. M. (2003). Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza, 13(6), 309-317. doi:10.1007/s00572-003-0237-6 es_ES
dc.description.references Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206-216. doi:10.1016/j.envexpbot.2005.12.006 es_ES
dc.description.references Cvikrová, M., Gemperlová, L., Martincová, O., & Vanková, R. (2013). Effect of drought and combined drought and heat stress on polyamine metabolism in proline-over-producing tobacco plants. Plant Physiology and Biochemistry, 73, 7-15. doi:10.1016/j.plaphy.2013.08.005 es_ES
dc.description.references Per, T. S., Khan, N. A., Reddy, P. S., Masood, A., Hasanuzzaman, M., Khan, M. I. R., & Anjum, N. A. (2017). Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics. Plant Physiology and Biochemistry, 115, 126-140. doi:10.1016/j.plaphy.2017.03.018 es_ES
dc.description.references Vera-Hernández, P., Ortega-Ramírez, M. A., Martínez Nuñez, M., Ruiz-Rivas, M., & Rosas-Cárdenas, F. de F. (2018). Proline as a probable biomarker of cold stress tolerance in Sorghum (Sorghum bicolor). Mexican Journal of Biotechnology, 3(3), 77-86. doi:10.29267/mxjb.2018.3.3.77 es_ES
dc.description.references Al Hassan, M., Pacurar, A., López-Gresa, M. P., Donat-Torres, M. P., Llinares, J. V., Boscaiu, M., & Vicente, O. (2016). Effects of Salt Stress on Three Ecologically Distinct Plantago Species. PLOS ONE, 11(8), e0160236. doi:10.1371/journal.pone.0160236 es_ES
dc.description.references Salehi, A., Tasdighi, H., & Gholamhoseini, M. (2016). Evaluation of proline, chlorophyll, soluble sugar content and uptake of nutrients in the German chamomile (Matricaria chamomilla L.) under drought stress and organic fertilizer treatments. Asian Pacific Journal of Tropical Biomedicine, 6(10), 886-891. doi:10.1016/j.apjtb.2016.08.009 es_ES
dc.description.references Karimi, M., Ahmadi, A., Hashemi, J., Abbasi, A., Tavarini, S., Guglielminetti, L., & Angelini, L. G. (2015). The effect of soil moisture depletion on Stevia (Stevia rebaudiana Bertoni) grown in greenhouse conditions: Growth, steviol glycosides content, soluble sugars and total antioxidant capacity. Scientia Horticulturae, 183, 93-99. doi:10.1016/j.scienta.2014.11.001 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem