- -

Influence of Parapets on Wave Overtopping on Mound Breakwaters with Crown Walls

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of Parapets on Wave Overtopping on Mound Breakwaters with Crown Walls

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Molines, Jorge es_ES
dc.contributor.author Bayón, Arnau es_ES
dc.contributor.author GÓMEZ-MARTÍN, M. ESTHER es_ES
dc.contributor.author Medina, Josep R. es_ES
dc.date.accessioned 2020-05-23T03:01:10Z
dc.date.available 2020-05-23T03:01:10Z
dc.date.issued 2019-12-11 es_ES
dc.identifier.uri http://hdl.handle.net/10251/144218
dc.description.abstract [EN] Background literature on the influence of parapets on the overtopping of mound breakwaters is limited. In this study, numerical tests were conducted using computational fluid dynamics (CFD) to analyze the influence of nine crown wall geometries (seven with parapets). The CFD model was implemented in OpenFOAM((R)) and successfully validated with laboratory tests. A new estimator of the dimensionless mean wave-overtopping discharges (logQ) on structures with parapets is proposed. The new estimator depends on the estimation of logQ of the same structure without a parapet. The effects on wave overtopping of the parapet angle (epsilon(p)), parapet width (w(p)), and parapet height (h(p)) were analyzed. Low values of epsilon(p) and w(p)/h(p) approximate to 1 produced the highest parapet effectiveness to reduce the mean wave-overtopping discharges. es_ES
dc.description.sponsorship This research was funded by Universitat Politecnica de Valencia (Grant SP20180111, Primeros Proyectos de Investigacion (PAID-06-18), Vicerrectorado de Investigacion, Innovacion y Transferencia de la Universitat Politecnica de Valencia). The authors are grateful for financial support from European FEDER and Spanish Ministerio de Economía y Competitividad (Grant RTI2018-101073-B-I00), SATO (OHL Group). The authors acknowledge the support provided by the postdoctoral company internship program AEST granted to Jorge Molines by Generalitat Valenciana (Grant AEST/2019/004) and by the postdoctoral program APOSTD granted to Arnau Bayon by Generalitat Valenciana (Grant APOSTD/2019/100). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sustainability es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Wave overtopping es_ES
dc.subject Bullnose es_ES
dc.subject Parapet es_ES
dc.subject Recurved wall es_ES
dc.subject Mound breakwater es_ES
dc.subject CFD es_ES
dc.subject VOF es_ES
dc.subject RANS es_ES
dc.subject OpenFOAM es_ES
dc.subject Crown wall es_ES
dc.subject.classification INGENIERIA E INFRAESTRUCTURA DE LOS TRANSPORTES es_ES
dc.subject.classification MECANICA DE FLUIDOS es_ES
dc.title Influence of Parapets on Wave Overtopping on Mound Breakwaters with Crown Walls es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/su11247109 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//PAID-06-18/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//SP20180111/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AEST%2F2019%2F004/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101073-B-I00/ES/ESTABILIDAD HIDRAULICA Y TRANSMISION DE DIQUES ROMPEOLAS HOMOGENEOS DE BAJA COTA DISEÑADOS A ROTURA POR FONDO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F100/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería e Infraestructura de los Transportes - Departament d'Enginyeria i Infraestructura dels Transports es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Molines, J.; Bayón, A.; Gómez-Martín, ME.; Medina, JR. (2019). Influence of Parapets on Wave Overtopping on Mound Breakwaters with Crown Walls. Sustainability. 11(24):1-19. https://doi.org/10.3390/su11247109 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/su11247109 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 19 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 24 es_ES
dc.identifier.eissn 2071-1050 es_ES
dc.relation.pasarela S\399245 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references EurOtop Wave Overtopping of Sea Defences and Related Structures: 2007. Assessment Manual http://www.kennisbank-waterbouw.nl/DesignCodes/EurOtop.pdf es_ES
dc.description.references EurOtop. Manual on wave overtopping of sea defences and related structures. An Overtopping Manual Largely Based on European Research, but for Worldwide Application www.overtopping-manual.com es_ES
dc.description.references Van Gent, M. R. A., van den Boogaard, H. F. P., Pozueta, B., & Medina, J. R. (2007). Neural network modelling of wave overtopping at coastal structures. Coastal Engineering, 54(8), 586-593. doi:10.1016/j.coastaleng.2006.12.001 es_ES
dc.description.references Molines, J., & Medina, J. R. (2016). Explicit Wave-Overtopping Formula for Mound Breakwaters with Crown Walls Using CLASH Neural Network–Derived Data. Journal of Waterway, Port, Coastal, and Ocean Engineering, 142(3), 04015024. doi:10.1061/(asce)ww.1943-5460.0000322 es_ES
dc.description.references Molines, J., & Medina, J. R. (2015). Calibration of overtopping roughness factors for concrete armor units in non-breaking conditions using the CLASH database. Coastal Engineering, 96, 62-70. doi:10.1016/j.coastaleng.2014.11.008 es_ES
dc.description.references Van Doorslaer, K., De Rouck, J., Audenaert, S., & Duquet, V. (2015). Crest modifications to reduce wave overtopping of non-breaking waves over a smooth dike slope. Coastal Engineering, 101, 69-88. doi:10.1016/j.coastaleng.2015.02.004 es_ES
dc.description.references Castellino, M., Sammarco, P., Romano, A., Martinelli, L., Ruol, P., Franco, L., & De Girolamo, P. (2018). Large impulsive forces on recurved parapets under non-breaking waves. A numerical study. Coastal Engineering, 136, 1-15. doi:10.1016/j.coastaleng.2018.01.012 es_ES
dc.description.references Martinelli, L., Ruol, P., Volpato, M., Favaretto, C., Castellino, M., De Girolamo, P., … Sammarco, P. (2018). Experimental investigation on non-breaking wave forces and overtopping at the recurved parapets of vertical breakwaters. Coastal Engineering, 141, 52-67. doi:10.1016/j.coastaleng.2018.08.017 es_ES
dc.description.references Formentin, S. M., & Zanuttigh, B. (2019). A Genetic Programming based formula for wave overtopping by crown walls and bullnoses. Coastal Engineering, 152, 103529. doi:10.1016/j.coastaleng.2019.103529 es_ES
dc.description.references Lykke Andersen, T., Burcharth, H. ., & Gironella, X. (2011). Comparison of new large and small scale overtopping tests for rubble mound breakwaters. Coastal Engineering, 58(4), 351-373. doi:10.1016/j.coastaleng.2010.12.004 es_ES
dc.description.references Molines, J., Herrera, M. P., & Medina, J. R. (2018). Estimations of wave forces on crown walls based on wave overtopping rates. Coastal Engineering, 132, 50-62. doi:10.1016/j.coastaleng.2017.11.004 es_ES
dc.description.references Higuera, P., Lara, J. L., & Losada, I. J. (2014). Three-dimensional interaction of waves and porous coastal structures using OpenFOAM®. Part II: Application. Coastal Engineering, 83, 259-270. doi:10.1016/j.coastaleng.2013.09.002 es_ES
dc.description.references Jacobsen, N. G., van Gent, M. R. A., Capel, A., & Borsboom, M. (2018). Numerical prediction of integrated wave loads on crest walls on top of rubble mound structures. Coastal Engineering, 142, 110-124. doi:10.1016/j.coastaleng.2018.10.004 es_ES
dc.description.references Guanche, R., Losada, I. J., & Lara, J. L. (2009). Numerical analysis of wave loads for coastal structure stability. Coastal Engineering, 56(5-6), 543-558. doi:10.1016/j.coastaleng.2008.11.003 es_ES
dc.description.references Issa, R. . (1986). Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics, 62(1), 40-65. doi:10.1016/0021-9991(86)90099-9 es_ES
dc.description.references Patankar, S. ., & Spalding, D. . (1972). A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer, 15(10), 1787-1806. doi:10.1016/0017-9310(72)90054-3 es_ES
dc.description.references Jensen, B., Jacobsen, N. G., & Christensen, E. D. (2014). Investigations on the porous media equations and resistance coefficients for coastal structures. Coastal Engineering, 84, 56-72. doi:10.1016/j.coastaleng.2013.11.004 es_ES
dc.description.references Hirt, C. ., & Nichols, B. . (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201-225. doi:10.1016/0021-9991(81)90145-5 es_ES
dc.description.references Berberović, E., van Hinsberg, N. P., Jakirlić, S., Roisman, I. V., & Tropea, C. (2009). Drop impact onto a liquid layer of finite thickness: Dynamics of the cavity evolution. Physical Review E, 79(3). doi:10.1103/physreve.79.036306 es_ES
dc.description.references Jacobsen, N. G., van Gent, M. R. A., & Wolters, G. (2015). Numerical analysis of the interaction of irregular waves with two dimensional permeable coastal structures. Coastal Engineering, 102, 13-29. doi:10.1016/j.coastaleng.2015.05.004 es_ES
dc.description.references Higuera, P., Lara, J. L., & Losada, I. J. (2013). Realistic wave generation and active wave absorption for Navier–Stokes models. Coastal Engineering, 71, 102-118. doi:10.1016/j.coastaleng.2012.07.002 es_ES
dc.description.references Higuera, P., Lara, J. L., & Losada, I. J. (2013). Simulating coastal engineering processes with OpenFOAM®. Coastal Engineering, 71, 119-134. doi:10.1016/j.coastaleng.2012.06.002 es_ES
dc.description.references Higuera, P., Lara, J. L., & Losada, I. J. (2014). Three-dimensional interaction of waves and porous coastal structures using OpenFOAM®. Part I: Formulation and validation. Coastal Engineering, 83, 243-258. doi:10.1016/j.coastaleng.2013.08.010 es_ES
dc.description.references Kim, S.-E., & Boysan, F. (1999). Application of CFD to environmental flows. Journal of Wind Engineering and Industrial Aerodynamics, 81(1-3), 145-158. doi:10.1016/s0167-6105(99)00013-6 es_ES
dc.description.references Biswas, R., & Strawn, R. C. (1998). Tetrahedral and hexahedral mesh adaptation for CFD problems. Applied Numerical Mathematics, 26(1-2), 135-151. doi:10.1016/s0168-9274(97)00092-5 es_ES
dc.description.references Huang, H., & Prosperetti, A. (1994). EFFECT OF GRID ORTHOGONALITY ON THE SOLUTION ACCURACY OF THE TWO-DIMENSIONAL CONVECTION-DIFFUSION EQUATION. Numerical Heat Transfer, Part B: Fundamentals, 26(1), 1-20. doi:10.1080/10407799408914913 es_ES
dc.description.references Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications. (2008). Journal of Fluids Engineering, 130(7), 078001. doi:10.1115/1.2960953 es_ES
dc.description.references Bayon-Barrachina, A., & Lopez-Jimenez, P. A. (2015). Numerical analysis of hydraulic jumps using OpenFOAM. Journal of Hydroinformatics, 17(4), 662-678. doi:10.2166/hydro.2015.041 es_ES
dc.description.references Bayon, A., Valero, D., García-Bartual, R., Vallés-Morán, F. ​José, & López-Jiménez, P. A. (2016). Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environmental Modelling & Software, 80, 322-335. doi:10.1016/j.envsoft.2016.02.018 es_ES
dc.description.references Bayon, A., Toro, J. P., Bombardelli, F. A., Matos, J., & López-Jiménez, P. A. (2018). Influence of VOF technique, turbulence model and discretization scheme on the numerical simulation of the non-aerated, skimming flow in stepped spillways. Journal of Hydro-environment Research, 19, 137-149. doi:10.1016/j.jher.2017.10.002 es_ES
dc.description.references Romano, A., Bellotti, G., Briganti, R., & Franco, L. (2015). Uncertainties in the physical modelling of the wave overtopping over a rubble mound breakwater: The role of the seeding number and of the test duration. Coastal Engineering, 103, 15-21. doi:10.1016/j.coastaleng.2015.05.005 es_ES
dc.description.references Vílchez, M., Clavero, M., Lara, J. L., & Losada, M. A. (2016). A characteristic friction diagram for the numerical quantification of the hydraulic performance of different breakwater types. Coastal Engineering, 114, 86-98. doi:10.1016/j.coastaleng.2016.03.006 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem