- -

Influence of Parapets on Wave Overtopping on Mound Breakwaters with Crown Walls

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of Parapets on Wave Overtopping on Mound Breakwaters with Crown Walls

Mostrar el registro completo del ítem

Molines, J.; Bayón, A.; Gómez-Martín, ME.; Medina, JR. (2019). Influence of Parapets on Wave Overtopping on Mound Breakwaters with Crown Walls. Sustainability. 11(24):1-19. https://doi.org/10.3390/su11247109

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144218

Ficheros en el ítem

Metadatos del ítem

Título: Influence of Parapets on Wave Overtopping on Mound Breakwaters with Crown Walls
Autor: Molines, Jorge Bayón, Arnau GÓMEZ-MARTÍN, M. ESTHER Medina, Josep R.
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería e Infraestructura de los Transportes - Departament d'Enginyeria i Infraestructura dels Transports
Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
[EN] Background literature on the influence of parapets on the overtopping of mound breakwaters is limited. In this study, numerical tests were conducted using computational fluid dynamics (CFD) to analyze the influence ...[+]
Palabras clave: Wave overtopping , Bullnose , Parapet , Recurved wall , Mound breakwater , CFD , VOF , RANS , OpenFOAM , Crown wall
Derechos de uso: Reconocimiento (by)
Fuente:
Sustainability. (eissn: 2071-1050 )
DOI: 10.3390/su11247109
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/su11247109
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//PAID-06-18/
info:eu-repo/grantAgreement/UPV//SP20180111/
info:eu-repo/grantAgreement/GVA//AEST%2F2019%2F004/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101073-B-I00/ES/ESTABILIDAD HIDRAULICA Y TRANSMISION DE DIQUES ROMPEOLAS HOMOGENEOS DE BAJA COTA DISEÑADOS A ROTURA POR FONDO/
info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F100/
Agradecimientos:
This research was funded by Universitat Politecnica de Valencia (Grant SP20180111, Primeros Proyectos de Investigacion (PAID-06-18), Vicerrectorado de Investigacion, Innovacion y Transferencia de la Universitat Politecnica ...[+]
Tipo: Artículo

References

EurOtop Wave Overtopping of Sea Defences and Related Structures: 2007. Assessment Manual http://www.kennisbank-waterbouw.nl/DesignCodes/EurOtop.pdf

EurOtop. Manual on wave overtopping of sea defences and related structures. An Overtopping Manual Largely Based on European Research, but for Worldwide Application www.overtopping-manual.com

Van Gent, M. R. A., van den Boogaard, H. F. P., Pozueta, B., & Medina, J. R. (2007). Neural network modelling of wave overtopping at coastal structures. Coastal Engineering, 54(8), 586-593. doi:10.1016/j.coastaleng.2006.12.001 [+]
EurOtop Wave Overtopping of Sea Defences and Related Structures: 2007. Assessment Manual http://www.kennisbank-waterbouw.nl/DesignCodes/EurOtop.pdf

EurOtop. Manual on wave overtopping of sea defences and related structures. An Overtopping Manual Largely Based on European Research, but for Worldwide Application www.overtopping-manual.com

Van Gent, M. R. A., van den Boogaard, H. F. P., Pozueta, B., & Medina, J. R. (2007). Neural network modelling of wave overtopping at coastal structures. Coastal Engineering, 54(8), 586-593. doi:10.1016/j.coastaleng.2006.12.001

Molines, J., & Medina, J. R. (2016). Explicit Wave-Overtopping Formula for Mound Breakwaters with Crown Walls Using CLASH Neural Network–Derived Data. Journal of Waterway, Port, Coastal, and Ocean Engineering, 142(3), 04015024. doi:10.1061/(asce)ww.1943-5460.0000322

Molines, J., & Medina, J. R. (2015). Calibration of overtopping roughness factors for concrete armor units in non-breaking conditions using the CLASH database. Coastal Engineering, 96, 62-70. doi:10.1016/j.coastaleng.2014.11.008

Van Doorslaer, K., De Rouck, J., Audenaert, S., & Duquet, V. (2015). Crest modifications to reduce wave overtopping of non-breaking waves over a smooth dike slope. Coastal Engineering, 101, 69-88. doi:10.1016/j.coastaleng.2015.02.004

Castellino, M., Sammarco, P., Romano, A., Martinelli, L., Ruol, P., Franco, L., & De Girolamo, P. (2018). Large impulsive forces on recurved parapets under non-breaking waves. A numerical study. Coastal Engineering, 136, 1-15. doi:10.1016/j.coastaleng.2018.01.012

Martinelli, L., Ruol, P., Volpato, M., Favaretto, C., Castellino, M., De Girolamo, P., … Sammarco, P. (2018). Experimental investigation on non-breaking wave forces and overtopping at the recurved parapets of vertical breakwaters. Coastal Engineering, 141, 52-67. doi:10.1016/j.coastaleng.2018.08.017

Formentin, S. M., & Zanuttigh, B. (2019). A Genetic Programming based formula for wave overtopping by crown walls and bullnoses. Coastal Engineering, 152, 103529. doi:10.1016/j.coastaleng.2019.103529

Lykke Andersen, T., Burcharth, H. ., & Gironella, X. (2011). Comparison of new large and small scale overtopping tests for rubble mound breakwaters. Coastal Engineering, 58(4), 351-373. doi:10.1016/j.coastaleng.2010.12.004

Molines, J., Herrera, M. P., & Medina, J. R. (2018). Estimations of wave forces on crown walls based on wave overtopping rates. Coastal Engineering, 132, 50-62. doi:10.1016/j.coastaleng.2017.11.004

Higuera, P., Lara, J. L., & Losada, I. J. (2014). Three-dimensional interaction of waves and porous coastal structures using OpenFOAM®. Part II: Application. Coastal Engineering, 83, 259-270. doi:10.1016/j.coastaleng.2013.09.002

Jacobsen, N. G., van Gent, M. R. A., Capel, A., & Borsboom, M. (2018). Numerical prediction of integrated wave loads on crest walls on top of rubble mound structures. Coastal Engineering, 142, 110-124. doi:10.1016/j.coastaleng.2018.10.004

Guanche, R., Losada, I. J., & Lara, J. L. (2009). Numerical analysis of wave loads for coastal structure stability. Coastal Engineering, 56(5-6), 543-558. doi:10.1016/j.coastaleng.2008.11.003

Issa, R. . (1986). Solution of the implicitly discretised fluid flow equations by operator-splitting. Journal of Computational Physics, 62(1), 40-65. doi:10.1016/0021-9991(86)90099-9

Patankar, S. ., & Spalding, D. . (1972). A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer, 15(10), 1787-1806. doi:10.1016/0017-9310(72)90054-3

Jensen, B., Jacobsen, N. G., & Christensen, E. D. (2014). Investigations on the porous media equations and resistance coefficients for coastal structures. Coastal Engineering, 84, 56-72. doi:10.1016/j.coastaleng.2013.11.004

Hirt, C. ., & Nichols, B. . (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39(1), 201-225. doi:10.1016/0021-9991(81)90145-5

Berberović, E., van Hinsberg, N. P., Jakirlić, S., Roisman, I. V., & Tropea, C. (2009). Drop impact onto a liquid layer of finite thickness: Dynamics of the cavity evolution. Physical Review E, 79(3). doi:10.1103/physreve.79.036306

Jacobsen, N. G., van Gent, M. R. A., & Wolters, G. (2015). Numerical analysis of the interaction of irregular waves with two dimensional permeable coastal structures. Coastal Engineering, 102, 13-29. doi:10.1016/j.coastaleng.2015.05.004

Higuera, P., Lara, J. L., & Losada, I. J. (2013). Realistic wave generation and active wave absorption for Navier–Stokes models. Coastal Engineering, 71, 102-118. doi:10.1016/j.coastaleng.2012.07.002

Higuera, P., Lara, J. L., & Losada, I. J. (2013). Simulating coastal engineering processes with OpenFOAM®. Coastal Engineering, 71, 119-134. doi:10.1016/j.coastaleng.2012.06.002

Higuera, P., Lara, J. L., & Losada, I. J. (2014). Three-dimensional interaction of waves and porous coastal structures using OpenFOAM®. Part I: Formulation and validation. Coastal Engineering, 83, 243-258. doi:10.1016/j.coastaleng.2013.08.010

Kim, S.-E., & Boysan, F. (1999). Application of CFD to environmental flows. Journal of Wind Engineering and Industrial Aerodynamics, 81(1-3), 145-158. doi:10.1016/s0167-6105(99)00013-6

Biswas, R., & Strawn, R. C. (1998). Tetrahedral and hexahedral mesh adaptation for CFD problems. Applied Numerical Mathematics, 26(1-2), 135-151. doi:10.1016/s0168-9274(97)00092-5

Huang, H., & Prosperetti, A. (1994). EFFECT OF GRID ORTHOGONALITY ON THE SOLUTION ACCURACY OF THE TWO-DIMENSIONAL CONVECTION-DIFFUSION EQUATION. Numerical Heat Transfer, Part B: Fundamentals, 26(1), 1-20. doi:10.1080/10407799408914913

Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications. (2008). Journal of Fluids Engineering, 130(7), 078001. doi:10.1115/1.2960953

Bayon-Barrachina, A., & Lopez-Jimenez, P. A. (2015). Numerical analysis of hydraulic jumps using OpenFOAM. Journal of Hydroinformatics, 17(4), 662-678. doi:10.2166/hydro.2015.041

Bayon, A., Valero, D., García-Bartual, R., Vallés-Morán, F. ​José, & López-Jiménez, P. A. (2016). Performance assessment of OpenFOAM and FLOW-3D in the numerical modeling of a low Reynolds number hydraulic jump. Environmental Modelling & Software, 80, 322-335. doi:10.1016/j.envsoft.2016.02.018

Bayon, A., Toro, J. P., Bombardelli, F. A., Matos, J., & López-Jiménez, P. A. (2018). Influence of VOF technique, turbulence model and discretization scheme on the numerical simulation of the non-aerated, skimming flow in stepped spillways. Journal of Hydro-environment Research, 19, 137-149. doi:10.1016/j.jher.2017.10.002

Romano, A., Bellotti, G., Briganti, R., & Franco, L. (2015). Uncertainties in the physical modelling of the wave overtopping over a rubble mound breakwater: The role of the seeding number and of the test duration. Coastal Engineering, 103, 15-21. doi:10.1016/j.coastaleng.2015.05.005

Vílchez, M., Clavero, M., Lara, J. L., & Losada, M. A. (2016). A characteristic friction diagram for the numerical quantification of the hydraulic performance of different breakwater types. Coastal Engineering, 114, 86-98. doi:10.1016/j.coastaleng.2016.03.006

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem