- -

Control Difuso de un Tranvía Híbrido Propulsado por Pila de Combustible, Batería y Supercondensador

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Control Difuso de un Tranvía Híbrido Propulsado por Pila de Combustible, Batería y Supercondensador

Mostrar el registro completo del ítem

García, P.; Fernández, LM.; Torreglosa, JP.; Jurado, F. (2012). Control Difuso de un Tranvía Híbrido Propulsado por Pila de Combustible, Batería y Supercondensador. Revista Iberoamericana de Automática e Informática industrial. 9(2):162-169. https://doi.org/10.1016/j.riai.2012.02.008

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144303

Ficheros en el ítem

Metadatos del ítem

Título: Control Difuso de un Tranvía Híbrido Propulsado por Pila de Combustible, Batería y Supercondensador
Autor: García, Pablo Fernández, Luis M. Torreglosa, Juan P. Jurado, Francisco
Fecha difusión:
Resumen:
[ES] El presente artículo se centra en la descripción de un nuevo sistema de gestión de energía para un nuevo tranvía, en la ciudad de Zaragoza (España), propulsado mediante pila de combustible de hidrógeno, como fuente ...[+]
Palabras clave: Vehículos híbridos , Sistema de gestión de energía , Almacenamiento de energía , Lógica difusa , Convertidores
Derechos de uso: Reserva de todos los derechos
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.1016/j.riai.2012.02.008
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.riai.2012.02.008
Agradecimientos:
Este trabajo ha sido financiado por Hynergreen Technologies S.A. y por el Programa Cenit del CDTI del Ministerio de Ciencia e Innovación de España, bajo el proyecto de investigación Ecotrans.
Tipo: Artículo

References

Ballard fuel cell power. (2011). [En línea] http://www.ballard.com/files/pdf/Spec_Sheets/FCvelocity-HD6_SPC5101744-0G.pdf.

Bauman, J., & Kazerani, M. (2008). A Comparative Study of Fuel-Cell–Battery, Fuel-Cell–Ultracapacitor, and Fuel-Cell–Battery–Ultracapacitor Vehicles. IEEE Transactions on Vehicular Technology, 57(2), 760-769. doi:10.1109/tvt.2007.906379

CAF - Construcciones y Auxiliar de Ferrocarriles. (2011a). Urbos 3 [En línea]. http://www.caf.es/ingles/productos/urbos3_descripcion.php?urbos_prod=c. [+]
Ballard fuel cell power. (2011). [En línea] http://www.ballard.com/files/pdf/Spec_Sheets/FCvelocity-HD6_SPC5101744-0G.pdf.

Bauman, J., & Kazerani, M. (2008). A Comparative Study of Fuel-Cell–Battery, Fuel-Cell–Ultracapacitor, and Fuel-Cell–Battery–Ultracapacitor Vehicles. IEEE Transactions on Vehicular Technology, 57(2), 760-769. doi:10.1109/tvt.2007.906379

CAF - Construcciones y Auxiliar de Ferrocarriles. (2011a). Urbos 3 [En línea]. http://www.caf.es/ingles/productos/urbos3_descripcion.php?urbos_prod=c.

CAF - Construcciones y Auxiliar de Ferrocarriles. (2011b). ACR System.[En línea] http://www.caf.es/ingles/id/sistema_acr.php.

Corbo, P., Corcione, F. E., Migliardini, F., & Veneri, O. (2005). Experimental study of a fuel cell power train for road transport application. Journal of Power Sources, 145(2), 610-619. doi:10.1016/j.jpowsour.2005.02.054

Davis S.C., Diegel S.W. and Boundy R.G. (2007). Transportation energy data book: Edition 27. U.S. Department of Energy.

Ehsani M., Gao Y., Gay S.E. and Emadi A. (2005). Modern Electric, Hybrid Electric, and Fuel Cell Vehicles: Fundamentals, Theory, and Design (Power Electronics and Applications Series). CRC Press.

Emadi, A., Young Joo Lee, & Rajashekara, K. (2008). Power Electronics and Motor Drives in Electric, Hybrid Electric, and Plug-In Hybrid Electric Vehicles. IEEE Transactions on Industrial Electronics, 55(6), 2237-2245. doi:10.1109/tie.2008.922768

Erdinc O., Vural B. and Uzunoglu M. A Wavelet-Fuzzy Logic Based Energy Management Strategy for a Fuel Cell/Battery/Ultra-capacitor Hybrid Vehicular Power System. Journal of Power System, 194, pp. 369-380.

Erdinc, O., Vural, B., Uzunoglu, M., & Ates, Y. (2009). Modeling and analysis of an FC/UC hybrid vehicular power system using a wavelet-fuzzy logic based load sharing and control algorithm. International Journal of Hydrogen Energy, 34(12), 5223-5233. doi:10.1016/j.ijhydene.2008.10.039

Fernandez, L. M., Garcia, P., Garcia, C. A., Torreglosa, J. P., & Jurado, F. (2010). Comparison of control schemes for a fuel cell hybrid tramway integrating two dc/dc converters. International Journal of Hydrogen Energy, 35(11), 5731-5744. doi:10.1016/j.ijhydene.2010.02.132

Gao, D., Jin, Z., & Lu, Q. (2008). Energy management strategy based on fuzzy logic for a fuel cell hybrid bus. Journal of Power Sources, 185(1), 311-317. doi:10.1016/j.jpowsour.2008.06.083

Garcia, P., Fernandez, L. M., Garcia, C. A., & Jurado, F. (2010). Energy Management System of Fuel-Cell-Battery Hybrid Tramway. IEEE Transactions on Industrial Electronics, 57(12), 4013-4023. doi:10.1109/tie.2009.2034173

Garcia, P., Fernández, L. M., Garcia, C. A., & Jurado, F. (2010). Comparative Study of PEM Fuel Cell Models for Integration in Propulsion Systems of Urban Public Transport. Fuel Cells, 10(6), 1024-1039. doi:10.1002/fuce.201000002

Hoogers G. (2003). Fuel cell technology handbook. CRC. Boca Ratón.

Li, C.-Y., & Liu, G.-P. (2009). Optimal fuzzy power control and management of fuel cell/battery hybrid vehicles. Journal of Power Sources, 192(2), 525-533. doi:10.1016/j.jpowsour.2009.03.007

Lisheng Shi and Crow M. L. (2008). Comparison of ultra capacitor electric circuit models. IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st, pp. 1-6.

Marie-Francoise, J.-N., Gualous, H., & Berthon, A. (2006). Supercapacitor thermal- and electrical-behaviour modelling using ANN. IEE Proceedings - Electric Power Applications, 153(2), 255. doi:10.1049/ip-epa:20050096

Maxwell Technologies. (2011). [En línea] http://www.maxwell.com/.

Spyker, R. L., & Nelms, R. M. (2000). Classical equivalent circuit parameters for a double-layer capacitor. IEEE Transactions on Aerospace and Electronic Systems, 36(3), 829-836. doi:10.1109/7.869502

Padullés, J., Ault, G. ., & McDonald, J. . (2000). An integrated SOFC plant dynamic model for power systems simulation. Journal of Power Sources, 86(1-2), 495-500. doi:10.1016/s0378-7753(99)00430-9

Pukrushpan J. T., Stefanopoulou A. G. Peng H. (2002). Control of Fuel Cell Power Systems: Principles, Modeling, Analysis, and Feedback Design. Springer Verlag. Londres.

Ruselowski G., Wallace J.P., Choudhury R., Wang M., Weber T. and Finizza A. (2001). Well-to-wheels energy use and greenhouse gas emissions of advanced fuel/vehicle systems. North American analysis. General Motors, the Argonne National Laboratory, BP, Exxon Mobil, and Shell.

Sandy Thomas, C. E. (2009). Transportation options in a carbon-constrained world: Hybrids, plug-in hybrids, biofuels, fuel cell electric vehicles, and battery electric vehicles. International Journal of Hydrogen Energy, 34(23), 9279-9296. doi:10.1016/j.ijhydene.2009.09.058

Sikha, G., White, R. E., & Popov, B. N. (2005). A Mathematical Model for a Lithium-Ion Battery/Electrochemical Capacitor Hybrid System. Journal of The Electrochemical Society, 152(8), A1682. doi:10.1149/1.1940749

The MathWorks, Inc.SimPowerSystems (2011). [En línea]. http://www.mathworks.com/access/helpdesk/help/toolbox/physmod/powersys/index.html?/access/helpdesk/help/toolbox/physmod/powersys/&http://www.mathworks.com/access/helpdesk/help/helpdesk.html.

Srinivasan, V., & Weidner, J. W. (1999). Mathematical Modeling of Electrochemical Capacitors. Journal of The Electrochemical Society, 146(5), 1650-1658. doi:10.1149/1.1391821

Winston Battery Limited. (2011). [En línea] http://www.thunder-sky.com/.

Zubieta, L., & Bonert, R. (2000). Characterization of double-layer capacitors for power electronics applications. IEEE Transactions on Industry Applications, 36(1), 199-205. doi:10.1109/28.821816

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem