dc.contributor.author |
Wubben, Jamie
|
es_ES |
dc.contributor.author |
FABRA COLLADO, FRANCISCO JOSE
|
es_ES |
dc.contributor.author |
Tavares De Araujo Cesariny Calafate, Carlos Miguel
|
es_ES |
dc.contributor.author |
Krzeszowski, Tomasz
|
es_ES |
dc.contributor.author |
Márquez Barja, Johann Marcelo
|
es_ES |
dc.contributor.author |
Cano, Juan-Carlos
|
es_ES |
dc.contributor.author |
Manzoni, Pietro
|
es_ES |
dc.date.accessioned |
2020-05-26T03:03:44Z |
|
dc.date.available |
2020-05-26T03:03:44Z |
|
dc.date.issued |
2019-12-12 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/144317 |
|
dc.description.abstract |
[EN] Over the last few years, several researchers have been developing protocols and applications in order to autonomously land unmanned aerial vehicles (UAVs). However, most of the proposed protocols rely on expensive equipment or do not satisfy the high precision needs of some UAV applications such as package retrieval and delivery or the compact landing of UAV swarms. Therefore, in this work, a solution for high precision landing based on the use of ArUco markers is presented. In the proposed solution, a UAV equipped with a low-cost camera is able to detect ArUco markers sized 56×56 cm from an altitude of up to 30 m. Once the marker is detected, the UAV changes its flight behavior in order to land on the exact position where the marker is located. The proposal was evaluated and validated using both the ArduSim simulation platform and real UAV flights. The results show an average offset of only 11 cm from the target position, which vastly improves the landing accuracy compared to the traditional GPS-based landing, which typically deviates from the intended target by 1 to 3 m. |
es_ES |
dc.description.sponsorship |
This work was funded by the Ministerio de Ciencia, Innovación y Universidades, Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad, Proyectos I+D+I 2018 , Spain, under Grant RTI2018-096384-B-I00. |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
MDPI AG |
es_ES |
dc.relation.ispartof |
Electronics |
es_ES |
dc.rights |
Reconocimiento (by) |
es_ES |
dc.subject |
UAV |
es_ES |
dc.subject |
Autonomous landing |
es_ES |
dc.subject |
Vision-based |
es_ES |
dc.subject |
ArduSim |
es_ES |
dc.subject |
ArUco marker |
es_ES |
dc.subject.classification |
ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES |
es_ES |
dc.title |
Accurate Landing of Unmanned Aerial Vehicles Using Ground Pattern Recognition |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.3390/electronics8121532 |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096384-B-I00/ES/SOLUCIONES PARA UNA GESTION EFICIENTE DEL TRAFICO VEHICULAR BASADAS EN SISTEMAS Y SERVICIOS EN RED/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors |
es_ES |
dc.description.bibliographicCitation |
Wubben, J.; Fabra Collado, FJ.; Tavares De Araujo Cesariny Calafate, CM.; Krzeszowski, T.; Márquez Barja, JM.; Cano, J.; Manzoni, P. (2019). Accurate Landing of Unmanned Aerial Vehicles Using Ground Pattern Recognition. Electronics. 8(12):1-16. https://doi.org/10.3390/electronics8121532 |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.3390/electronics8121532 |
es_ES |
dc.description.upvformatpinicio |
1 |
es_ES |
dc.description.upvformatpfin |
16 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
8 |
es_ES |
dc.description.issue |
12 |
es_ES |
dc.identifier.eissn |
2079-9292 |
es_ES |
dc.relation.pasarela |
S\398858 |
es_ES |
dc.contributor.funder |
Agencia Estatal de Investigación |
es_ES |
dc.description.references |
Pan, X., Ma, D., Jin, L., & Jiang, Z. (2008). Vision-Based Approach Angle and Height Estimation for UAV Landing. 2008 Congress on Image and Signal Processing. doi:10.1109/cisp.2008.78 |
es_ES |
dc.description.references |
Tang, D., Li, F., Shen, N., & Guo, S. (2011). UAV attitude and position estimation for vision-based landing. Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology. doi:10.1109/emeit.2011.6023131 |
es_ES |
dc.description.references |
Gautam, A., Sujit, P. B., & Saripalli, S. (2014). A survey of autonomous landing techniques for UAVs. 2014 International Conference on Unmanned Aircraft Systems (ICUAS). doi:10.1109/icuas.2014.6842377 |
es_ES |
dc.description.references |
Holybro Pixhawk 4 · PX4 v1.9.0 User Guidehttps://docs.px4.io/v1.9.0/en/flight_controller/pixhawk4.html |
es_ES |
dc.description.references |
Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F. J., & Medina-Carnicer, R. (2016). Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition, 51, 481-491. doi:10.1016/j.patcog.2015.09.023 |
es_ES |
dc.description.references |
Romero-Ramirez, F. J., Muñoz-Salinas, R., & Medina-Carnicer, R. (2018). Speeded up detection of squared fiducial markers. Image and Vision Computing, 76, 38-47. doi:10.1016/j.imavis.2018.05.004 |
es_ES |
dc.description.references |
ArUco: Augmented reality library based on OpenCVhttps://sourceforge.net/projects/aruco/ |
es_ES |
dc.description.references |
Jin, S., Zhang, J., Shen, L., & Li, T. (2016). On-board vision autonomous landing techniques for quadrotor: A survey. 2016 35th Chinese Control Conference (CCC). doi:10.1109/chicc.2016.7554984 |
es_ES |
dc.description.references |
Chen, X., Phang, S. K., Shan, M., & Chen, B. M. (2016). System integration of a vision-guided UAV for autonomous landing on moving platform. 2016 12th IEEE International Conference on Control and Automation (ICCA). doi:10.1109/icca.2016.7505370 |
es_ES |
dc.description.references |
Nowak, E., Gupta, K., & Najjaran, H. (2017). Development of a Plug-and-Play Infrared Landing System for Multirotor Unmanned Aerial Vehicles. 2017 14th Conference on Computer and Robot Vision (CRV). doi:10.1109/crv.2017.23 |
es_ES |
dc.description.references |
Shaker, M., Smith, M. N. R., Yue, S., & Duckett, T. (2010). Vision-Based Landing of a Simulated Unmanned Aerial Vehicle with Fast Reinforcement Learning. 2010 International Conference on Emerging Security Technologies. doi:10.1109/est.2010.14 |
es_ES |
dc.description.references |
Araar, O., Aouf, N., & Vitanov, I. (2016). Vision Based Autonomous Landing of Multirotor UAV on Moving Platform. Journal of Intelligent & Robotic Systems, 85(2), 369-384. doi:10.1007/s10846-016-0399-z |
es_ES |
dc.description.references |
Patruno, C., Nitti, M., Petitti, A., Stella, E., & D’Orazio, T. (2018). A Vision-Based Approach for Unmanned Aerial Vehicle Landing. Journal of Intelligent & Robotic Systems, 95(2), 645-664. doi:10.1007/s10846-018-0933-2 |
es_ES |
dc.description.references |
Baca, T., Stepan, P., Spurny, V., Hert, D., Penicka, R., Saska, M., … Kumar, V. (2019). Autonomous landing on a moving vehicle with an unmanned aerial vehicle. Journal of Field Robotics, 36(5), 874-891. doi:10.1002/rob.21858 |
es_ES |
dc.description.references |
De Souza, J. P. C., Marcato, A. L. M., de Aguiar, E. P., Jucá, M. A., & Teixeira, A. M. (2019). Autonomous Landing of UAV Based on Artificial Neural Network Supervised by Fuzzy Logic. Journal of Control, Automation and Electrical Systems, 30(4), 522-531. doi:10.1007/s40313-019-00465-y |
es_ES |
dc.description.references |
SITL Simulator (Software in the Loop)http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html |
es_ES |
dc.description.references |
Fabra, F., Calafate, C. T., Cano, J.-C., & Manzoni, P. (2017). On the impact of inter-UAV communications interference in the 2.4 GHz band. 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC). doi:10.1109/iwcmc.2017.7986413 |
es_ES |
dc.description.references |
MAVLink Micro Air Vehicle Communication Protocolhttp://qgroundcontrol.org/mavlink/start |
es_ES |
dc.description.references |
Fabra, F., Calafate, C. T., Cano, J. C., & Manzoni, P. (2018). ArduSim: Accurate and real-time multicopter simulation. Simulation Modelling Practice and Theory, 87, 170-190. doi:10.1016/j.simpat.2018.06.009 |
es_ES |
dc.description.references |
Careem, M. A. A., Gomez, J., Saha, D., & Dutta, A. (2019). HiPER-V: A High Precision Radio Frequency Vehicle for Aerial Measurements. 2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). doi:10.1109/sahcn.2019.8824903 |
es_ES |
dc.subject.ods |
09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación |
es_ES |
dc.subject.ods |
11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles |
es_ES |