- -

Accurate Landing of Unmanned Aerial Vehicles Using Ground Pattern Recognition

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Accurate Landing of Unmanned Aerial Vehicles Using Ground Pattern Recognition

Show simple item record

Files in this item

dc.contributor.author Wubben, Jamie es_ES
dc.contributor.author FABRA COLLADO, FRANCISCO JOSE es_ES
dc.contributor.author Tavares De Araujo Cesariny Calafate, Carlos Miguel es_ES
dc.contributor.author Krzeszowski, Tomasz es_ES
dc.contributor.author Márquez Barja, Johann Marcelo es_ES
dc.contributor.author Cano, Juan-Carlos es_ES
dc.contributor.author Manzoni, Pietro es_ES
dc.date.accessioned 2020-05-26T03:03:44Z
dc.date.available 2020-05-26T03:03:44Z
dc.date.issued 2019-12-12 es_ES
dc.identifier.uri http://hdl.handle.net/10251/144317
dc.description.abstract [EN] Over the last few years, several researchers have been developing protocols and applications in order to autonomously land unmanned aerial vehicles (UAVs). However, most of the proposed protocols rely on expensive equipment or do not satisfy the high precision needs of some UAV applications such as package retrieval and delivery or the compact landing of UAV swarms. Therefore, in this work, a solution for high precision landing based on the use of ArUco markers is presented. In the proposed solution, a UAV equipped with a low-cost camera is able to detect ArUco markers sized 56×56 cm from an altitude of up to 30 m. Once the marker is detected, the UAV changes its flight behavior in order to land on the exact position where the marker is located. The proposal was evaluated and validated using both the ArduSim simulation platform and real UAV flights. The results show an average offset of only 11 cm from the target position, which vastly improves the landing accuracy compared to the traditional GPS-based landing, which typically deviates from the intended target by 1 to 3 m. es_ES
dc.description.sponsorship This work was funded by the Ministerio de Ciencia, Innovación y Universidades, Programa Estatal de Investigación, Desarrollo e Innovación Orientada a los Retos de la Sociedad, Proyectos I+D+I 2018 , Spain, under Grant RTI2018-096384-B-I00. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Electronics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject UAV es_ES
dc.subject Autonomous landing es_ES
dc.subject Vision-based es_ES
dc.subject ArduSim es_ES
dc.subject ArUco marker es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Accurate Landing of Unmanned Aerial Vehicles Using Ground Pattern Recognition es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/electronics8121532 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096384-B-I00/ES/SOLUCIONES PARA UNA GESTION EFICIENTE DEL TRAFICO VEHICULAR BASADAS EN SISTEMAS Y SERVICIOS EN RED/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Wubben, J.; Fabra Collado, FJ.; Tavares De Araujo Cesariny Calafate, CM.; Krzeszowski, T.; Márquez Barja, JM.; Cano, J.; Manzoni, P. (2019). Accurate Landing of Unmanned Aerial Vehicles Using Ground Pattern Recognition. Electronics. 8(12):1-16. https://doi.org/10.3390/electronics8121532 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/electronics8121532 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 16 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 12 es_ES
dc.identifier.eissn 2079-9292 es_ES
dc.relation.pasarela S\398858 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Pan, X., Ma, D., Jin, L., & Jiang, Z. (2008). Vision-Based Approach Angle and Height Estimation for UAV Landing. 2008 Congress on Image and Signal Processing. doi:10.1109/cisp.2008.78 es_ES
dc.description.references Tang, D., Li, F., Shen, N., & Guo, S. (2011). UAV attitude and position estimation for vision-based landing. Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology. doi:10.1109/emeit.2011.6023131 es_ES
dc.description.references Gautam, A., Sujit, P. B., & Saripalli, S. (2014). A survey of autonomous landing techniques for UAVs. 2014 International Conference on Unmanned Aircraft Systems (ICUAS). doi:10.1109/icuas.2014.6842377 es_ES
dc.description.references Holybro Pixhawk 4 · PX4 v1.9.0 User Guidehttps://docs.px4.io/v1.9.0/en/flight_controller/pixhawk4.html es_ES
dc.description.references Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F. J., & Medina-Carnicer, R. (2016). Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition, 51, 481-491. doi:10.1016/j.patcog.2015.09.023 es_ES
dc.description.references Romero-Ramirez, F. J., Muñoz-Salinas, R., & Medina-Carnicer, R. (2018). Speeded up detection of squared fiducial markers. Image and Vision Computing, 76, 38-47. doi:10.1016/j.imavis.2018.05.004 es_ES
dc.description.references ArUco: Augmented reality library based on OpenCVhttps://sourceforge.net/projects/aruco/ es_ES
dc.description.references Jin, S., Zhang, J., Shen, L., & Li, T. (2016). On-board vision autonomous landing techniques for quadrotor: A survey. 2016 35th Chinese Control Conference (CCC). doi:10.1109/chicc.2016.7554984 es_ES
dc.description.references Chen, X., Phang, S. K., Shan, M., & Chen, B. M. (2016). System integration of a vision-guided UAV for autonomous landing on moving platform. 2016 12th IEEE International Conference on Control and Automation (ICCA). doi:10.1109/icca.2016.7505370 es_ES
dc.description.references Nowak, E., Gupta, K., & Najjaran, H. (2017). Development of a Plug-and-Play Infrared Landing System for Multirotor Unmanned Aerial Vehicles. 2017 14th Conference on Computer and Robot Vision (CRV). doi:10.1109/crv.2017.23 es_ES
dc.description.references Shaker, M., Smith, M. N. R., Yue, S., & Duckett, T. (2010). Vision-Based Landing of a Simulated Unmanned Aerial Vehicle with Fast Reinforcement Learning. 2010 International Conference on Emerging Security Technologies. doi:10.1109/est.2010.14 es_ES
dc.description.references Araar, O., Aouf, N., & Vitanov, I. (2016). Vision Based Autonomous Landing of Multirotor UAV on Moving Platform. Journal of Intelligent & Robotic Systems, 85(2), 369-384. doi:10.1007/s10846-016-0399-z es_ES
dc.description.references Patruno, C., Nitti, M., Petitti, A., Stella, E., & D’Orazio, T. (2018). A Vision-Based Approach for Unmanned Aerial Vehicle Landing. Journal of Intelligent & Robotic Systems, 95(2), 645-664. doi:10.1007/s10846-018-0933-2 es_ES
dc.description.references Baca, T., Stepan, P., Spurny, V., Hert, D., Penicka, R., Saska, M., … Kumar, V. (2019). Autonomous landing on a moving vehicle with an unmanned aerial vehicle. Journal of Field Robotics, 36(5), 874-891. doi:10.1002/rob.21858 es_ES
dc.description.references De Souza, J. P. C., Marcato, A. L. M., de Aguiar, E. P., Jucá, M. A., & Teixeira, A. M. (2019). Autonomous Landing of UAV Based on Artificial Neural Network Supervised by Fuzzy Logic. Journal of Control, Automation and Electrical Systems, 30(4), 522-531. doi:10.1007/s40313-019-00465-y es_ES
dc.description.references SITL Simulator (Software in the Loop)http://ardupilot.org/dev/docs/sitl-simulator-software-in-the-loop.html es_ES
dc.description.references Fabra, F., Calafate, C. T., Cano, J.-C., & Manzoni, P. (2017). On the impact of inter-UAV communications interference in the 2.4 GHz band. 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC). doi:10.1109/iwcmc.2017.7986413 es_ES
dc.description.references MAVLink Micro Air Vehicle Communication Protocolhttp://qgroundcontrol.org/mavlink/start es_ES
dc.description.references Fabra, F., Calafate, C. T., Cano, J. C., & Manzoni, P. (2018). ArduSim: Accurate and real-time multicopter simulation. Simulation Modelling Practice and Theory, 87, 170-190. doi:10.1016/j.simpat.2018.06.009 es_ES
dc.description.references Careem, M. A. A., Gomez, J., Saha, D., & Dutta, A. (2019). HiPER-V: A High Precision Radio Frequency Vehicle for Aerial Measurements. 2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). doi:10.1109/sahcn.2019.8824903 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES
dc.subject.ods 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles es_ES


This item appears in the following Collection(s)

Show simple item record