- -

A new approach to the kinematic modeling of a three-dimensional car-like robot with differential drive using computational mechanics

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A new approach to the kinematic modeling of a three-dimensional car-like robot with differential drive using computational mechanics

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rubio Montoya, Francisco José es_ES
dc.contributor.author Llopis Albert, Carlos es_ES
dc.contributor.author Valero Chuliá, Francisco José es_ES
dc.contributor.author Besa Gonzálvez, Antonio José es_ES
dc.date.accessioned 2020-05-26T03:03:46Z
dc.date.available 2020-05-26T03:03:46Z
dc.date.issued 2019-03-13 es_ES
dc.identifier.issn 1687-8132 es_ES
dc.identifier.uri http://hdl.handle.net/10251/144318
dc.description.abstract [EN] This article presents a kinematic analysis of a four-wheeled mobile robot in three-dimensions, introducing computational mechanics. The novelty lies in (1) the type of robot that is analyzed, which has been scarcely dealt with in the literature, and (2) the methodology used which enables the systematic implementation of kinematic algorithms using the computer. The mobile robot has four wheels, four rockers (like an All-Terrain Mobile Robot), and a main body. It also has two actuators and uses a drive mechanism known as differential drive (like those of a slip/skid mobile robot). We characterize the mobile robot as a set of kinematic closed chains with rotational pairs between links and a higher contact pair between the wheels and the terrain. Then, a set of generalized coordinates are chosen and the constraint equations are established. A new concept named ¿driving modes¿ has been introduced because some of the constraint equations are derived from these. The kinematics is the first step in solving the dynamics of this robot in order to set a control algorithm for an autonomous car-like robot. This methodology has been successfully applied to a real mobile robot, ¿Robotnik,¿ and the results are analyzed. es_ES
dc.language Inglés es_ES
dc.publisher SAGE Publications es_ES
dc.relation.ispartof Advances in Mechanical Engineering es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Kinematics es_ES
dc.subject 3-degree-of-freedom modeling es_ES
dc.subject Vehicle Engineering es_ES
dc.subject Trajectory optimization es_ES
dc.subject Simulation es_ES
dc.subject Robotics es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title A new approach to the kinematic modeling of a three-dimensional car-like robot with differential drive using computational mechanics es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1177/1687814019825907 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Rubio Montoya, FJ.; Llopis Albert, C.; Valero Chuliá, FJ.; Besa Gonzálvez, AJ. (2019). A new approach to the kinematic modeling of a three-dimensional car-like robot with differential drive using computational mechanics. Advances in Mechanical Engineering. 11(3):1-14. https://doi.org/10.1177/1687814019825907 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1177/1687814019825907 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 14 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 11 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\382059 es_ES
dc.description.references Campion, G., Bastin, G., & Dandrea-Novel, B. (1996). Structural properties and classification of kinematic and dynamic models of wheeled mobile robots. IEEE Transactions on Robotics and Automation, 12(1), 47-62. doi:10.1109/70.481750 es_ES
dc.description.references Bajracharya, M., Maimone, M. W., & Helmick, D. (2008). Autonomy for Mars Rovers: Past, Present, and Future. Computer, 41(12), 44-50. doi:10.1109/mc.2008.479 es_ES
dc.description.references Poczter, S. L., & Jankovic, L. M. (2013). The Google Car: Driving Toward A Better Future? Journal of Business Case Studies (JBCS), 10(1), 7. doi:10.19030/jbcs.v10i1.8324 es_ES
dc.description.references Wang, T., Wu, Y., Liang, J., Han, C., Chen, J., & Zhao, Q. (2015). Analysis and Experimental Kinematics of a Skid-Steering Wheeled Robot Based on a Laser Scanner Sensor. Sensors, 15(5), 9681-9702. doi:10.3390/s150509681 es_ES
dc.description.references Alexander, J. C., & Maddocks, J. H. (1989). On the Kinematics of Wheeled Mobile Robots. The International Journal of Robotics Research, 8(5), 15-27. doi:10.1177/027836498900800502 es_ES
dc.description.references Muir, P. F., & Neuman, C. P. (1987). Kinematic modeling of wheeled mobile robots. Journal of Robotic Systems, 4(2), 281-340. doi:10.1002/rob.4620040209 es_ES
dc.description.references Tarokh, M., & McDermott, G. J. (2005). Kinematics modeling and analyses of articulated rovers. IEEE Transactions on Robotics, 21(4), 539-553. doi:10.1109/tro.2005.847602 es_ES
dc.description.references Zhang, N., Zhao, Y., Wei, H., & Chen, G. (2016). Experimental study on the influence of air injection on unsteady cloud cavitating flow dynamics. Advances in Mechanical Engineering, 8(11), 168781401667667. doi:10.1177/1687814016676678 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem