- -

A Distributed Approach for Collision Avoidance between Multirotor UAVs Following Planned Missions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Distributed Approach for Collision Avoidance between Multirotor UAVs Following Planned Missions

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author FABRA COLLADO, FRANCISCO JOSE es_ES
dc.contributor.author Zamora-Mero, Willian Jesus es_ES
dc.contributor.author Sangüesa-Escorihuela, Julio Alberto es_ES
dc.contributor.author Tavares De Araujo Cesariny Calafate, Carlos Miguel es_ES
dc.contributor.author Cano, Juan-Carlos es_ES
dc.contributor.author Manzoni, Pietro es_ES
dc.date.accessioned 2020-05-26T03:03:55Z
dc.date.available 2020-05-26T03:03:55Z
dc.date.issued 2019-05-26 es_ES
dc.identifier.uri http://hdl.handle.net/10251/144321
dc.description.abstract [EN] As the number of potential applications for Unmanned Aerial Vehicles (UAVs) keeps rising steadily, the chances that these devices get close to each other during their flights also increases, causing concerns regarding potential collisions. This paper proposed the Mission Based Collision Avoidance Protocol (MBCAP), a novel UAV collision avoidance protocol applicable to all types of multicopters flying autonomously. It relies on wireless communications in order to detect nearby UAVs, and to negotiate the procedure to avoid any potential collision. Experimental and simulation results demonstrated the validity and effectiveness of the proposed solution, which typically introduces a small overhead in the range of 15 to 42 s for each risky situation successfully handled. es_ES
dc.description.sponsorship This work was partially supported by the "Ministerio de Ciencia, Innovacion y Universidades, Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad, Proyectos I+D+I 2018", Spain, under Grant RTI2018-096384-B-I00, and the Universitat Politecnica de Valencia (UPV) under grant number FPI-2017-S1 for the training of PhD researchers. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Unmanned aerial vehicle es_ES
dc.subject Sense and avoid es_ES
dc.subject Collision avoidance es_ES
dc.subject ArduSim es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title A Distributed Approach for Collision Avoidance between Multirotor UAVs Following Planned Missions es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s19102404 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//FPI-2017-S1/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096384-B-I00/ES/SOLUCIONES PARA UNA GESTION EFICIENTE DEL TRAFICO VEHICULAR BASADAS EN SISTEMAS Y SERVICIOS EN RED/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Fabra Collado, FJ.; Zamora-Mero, WJ.; Sangüesa-Escorihuela, JA.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J.; Manzoni, P. (2019). A Distributed Approach for Collision Avoidance between Multirotor UAVs Following Planned Missions. Sensors. 19(10):1-25. https://doi.org/10.3390/s19102404 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s19102404 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 25 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 10 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 31130706 es_ES
dc.identifier.pmcid PMC6567031 es_ES
dc.relation.pasarela S\388175 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.description.references Mohamed, N., Al-Jaroodi, J., Jawhar, I., Idries, A., & Mohammed, F. (2020). Unmanned aerial vehicles applications in future smart cities. Technological Forecasting and Social Change, 153, 119293. doi:10.1016/j.techfore.2018.05.004 es_ES
dc.description.references SESAR Joint Undertakinghttps://www.sesarju.eu/ es_ES
dc.description.references Fabra, F., T. Calafate, C., Cano, J.-C., & Manzoni, P. (2018). MBCAP: Mission Based Collision Avoidance Protocol for UAVs. 2018 IEEE 32nd International Conference on Advanced Information Networking and Applications (AINA). doi:10.1109/aina.2018.00090 es_ES
dc.description.references Drone Collision Avoidancehttps://create.arduino.cc/projecthub/anshulsingh163/drone-collision-avoidance-system-0b6002 es_ES
dc.description.references Liu, Z., & Foina, A. G. (2016). Feature article: an autonomous quadrotor avoiding a helicopter in low-altitude flights. IEEE Aerospace and Electronic Systems Magazine, 31(9), 30-39. doi:10.1109/maes.2016.150131 es_ES
dc.description.references Xiang, J., Liu, Y., & Luo, Z. (2016). Flight safety measurements of UAVs in congested airspace. Chinese Journal of Aeronautics, 29(5), 1355-1366. doi:10.1016/j.cja.2016.08.017 es_ES
dc.description.references Lin, Q., Wang, X., & Wang, Y. (2018). Cooperative Formation and Obstacle Avoidance Algorithm for Multi-UAV System in 3D Environment. 2018 37th Chinese Control Conference (CCC). doi:10.23919/chicc.2018.8483113 es_ES
dc.description.references Zhou, X., Yu, X., & Peng, X. (2019). UAV Collision Avoidance Based on Varying Cells Strategy. IEEE Transactions on Aerospace and Electronic Systems, 55(4), 1743-1755. doi:10.1109/taes.2018.2875556 es_ES
dc.description.references Kim, H., & Ben-Othman, J. (2018). A Collision-Free Surveillance System Using Smart UAVs in Multi Domain IoT. IEEE Communications Letters, 22(12), 2587-2590. doi:10.1109/lcomm.2018.2875477 es_ES
dc.description.references Wang, M., Voos, H., & Su, D. (2018). Robust Online Obstacle Detection and Tracking for Collision-Free Navigation of Multirotor UAVs in Complex Environments. 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV). doi:10.1109/icarcv.2018.8581330 es_ES
dc.description.references Ma, L. (2018). Cooperative Target Tracking using a Fleet of UAVs with Collision and Obstacle Avoidance. 2018 22nd International Conference on System Theory, Control and Computing (ICSTCC). doi:10.1109/icstcc.2018.8540717 es_ES
dc.description.references Chen, P.-H., & Lee, C.-Y. (2018). UAVNet: An Efficient Obstacel Detection Model for UAV with Autonomous Flight. 2018 International Conference on Intelligent Autonomous Systems (ICoIAS). doi:10.1109/icoias.2018.8494201 es_ES
dc.description.references Fabra, F., Calafate, C. T., Cano, J. C., & Manzoni, P. (2018). ArduSim: Accurate and real-time multicopter simulation. Simulation Modelling Practice and Theory, 87, 170-190. doi:10.1016/j.simpat.2018.06.009 es_ES
dc.description.references Accurate and real-time multi-UAV simulationhttps://bitbucket.org/frafabco/ardusim/src/master/ es_ES
dc.description.references MAVLink Micro Air Vehicle Communication Protocolhttp://qgroundcontrol.org/mavlink/start es_ES
dc.description.references Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18-27. doi:10.1016/j.rse.2017.06.031 es_ES
dc.description.references NS-2 The Network Simulatorhttp://nsnam.sourceforge.net/wiki/index.php/Main_Page es_ES
dc.description.references OMNeT++ Discrete Event Simulatorhttps://omnetpp.org/ es_ES
dc.description.references Quaternium, Home of the Longest Flight Time Hybrid Dronehttp://www.quaternium.com/ es_ES
dc.description.references Gauss-Markov Mobilityhttps://doc.omnetpp.org/inet/api-current/neddoc/inet.mobility.single.GaussMarkovMobility.html es_ES
dc.description.references Ferrera, E., Alcántara, A., Capitán, J., Castaño, A., Marrón, P., & Ollero, A. (2018). Decentralized 3D Collision Avoidance for Multiple UAVs in Outdoor Environments. Sensors, 18(12), 4101. doi:10.3390/s18124101 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem