- -

Sistema Avanzado de Asistencia a la Conducción para la Detección de la Somnolencia

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Sistema Avanzado de Asistencia a la Conducción para la Detección de la Somnolencia

Show simple item record

Files in this item

dc.contributor.author Flores, Marco J. es_ES
dc.contributor.author Armingol, José M. es_ES
dc.contributor.author de la Escalera, Arturo es_ES
dc.date.accessioned 2020-05-27T17:53:35Z
dc.date.available 2020-05-27T17:53:35Z
dc.date.issued 2011-07-10
dc.identifier.issn 1697-7912
dc.identifier.uri http://hdl.handle.net/10251/144456
dc.description.abstract [ES] En este artículo se presenta un sistema avanzado de asistencia a la conducción (SAAC) diseñado para detectar automáticamente a somnolencia y la distracción del conductor. Este sistema se compone de dos partes: una para trabajar durante el día con luminación natural, y otra para funcionar en la noche utilizando iluminación infrarroja. Los principales objetivos son localizar l rostro y los ojos del conductor para analizarlos a través del tiempo y generar un índice de somnolencia y uno de distracción. Para llo se han utilizado técnicas de Visión por Computador e Inteligencia Artificial. Finalmente, el sistema ha sido probado con varios onductores sobre un vehículo en condiciones reales de conducción, en el día y en la noche. es_ES
dc.description.abstract [EN] Every day, statistics on traffic accidents reveal that human errors are the main cause of deaths and injuries on the word’s roads. In order to reduce these fatalities, a system for automatic detection of both drowsiness and distraction is presented. Artificial intelligent, computer vision and infrared illumination technologies are used to compute both drowsiness and distraction indexes in real time. Several examples of different driver images taken in a real vehicle at nighttime are shown to validate the proposed algorithms. es_ES
dc.description.sponsorship Este trabajo ha sido realizado gracias al apoyo del gobierno español a través de os proyectos de la CICYT, VISVIA (TRA2007-67786-C02-02) y POCIMA (TRA2007-67374-C02-01). es_ES
dc.language Español es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Revista Iberoamericana de Automática e Informática industrial es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Artificial intelligent es_ES
dc.subject Computer vision es_ES
dc.subject Drowsiness es_ES
dc.subject Driver es_ES
dc.subject Traffic accidents es_ES
dc.subject Infrared illumination es_ES
dc.subject Inteligencia Artificial es_ES
dc.subject Visión por Computador es_ES
dc.subject Somnolencia es_ES
dc.subject Distracción es_ES
dc.subject Conductor es_ES
dc.subject Accidentes de tráfico es_ES
dc.subject Iluminación infrarroja es_ES
dc.title Sistema Avanzado de Asistencia a la Conducción para la Detección de la Somnolencia es_ES
dc.title.alternative Advance assistance system for driver’s drowsiness detection es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.riai.2011.06.009
dc.relation.projectID info:eu-repo/grantAgreement/MEC//TRA2007-67786-C02-02/ES/VISION POR COMPUTADOR PARA LA PERCEPCION DE ENTORNOS VIARIOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//TRA2007-67374-C02-01/ES/SISTEMA DE DETECCION DE PEATONES, CICLISTAS Y MOTORISTAS-SISTEMA DE PERCEPCION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Flores, MJ.; Armingol, JM.; De La Escalera, A. (2011). Sistema Avanzado de Asistencia a la Conducción para la Detección de la Somnolencia. Revista Iberoamericana de Automática e Informática industrial. 8(3):216-228. https://doi.org/10.1016/j.riai.2011.06.009 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.riai.2011.06.009 es_ES
dc.description.upvformatpinicio 216 es_ES
dc.description.upvformatpfin 228 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 3 es_ES
dc.identifier.eissn 1697-7920
dc.relation.pasarela OJS\9685 es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.description.references ASFA, 2008. Driver fatigue is the number one cause of catastrophic truck accidents. Website, http://www.autoroutes.fr/. es_ES
dc.description.references Bergasa, L. M., Nuevo, J., Sotelo, M. A., Barea, R., & Lopez, M. E. (2006). Real-Time System for Monitoring Driver Vigilance. IEEE Transactions on Intelligent Transportation Systems, 7(1), 63-77. doi:10.1109/tits.2006.869598 es_ES
dc.description.references Bergasa, L., Nuevo, J., Sotelo, M., Vásquez, M., Jun 14-17 2004. Realtime system for monitoring driver vigilance. IEEE, Intelligent Vehicles Symposium 1.(2). es_ES
dc.description.references Bloemkolk, F., de Lijster, J., van Gelderen, M., July 2007. ITS strategy: the japanese formula for success. Study to promote ITS implementation in the Netherlands. Technical report, International A_aris O_ce, Ministry of Transportation, Public Works and Water Management. es_ES
dc.description.references Branzan, A., Widsten, B., Wang, T., Lan, J., Mah, J., June 2008. A computer vision-based system for real-time detection of sleep onset in fatigued drivers. IEEE, Intelligent Vehicles Symposium, 25-30. es_ES
dc.description.references Brookshear, J., 1983. Theory of computation: Formal Languages; Automata and Complexity. Vol. 1. Addison Wesley Iberoamericana. es_ES
dc.description.references Chang, B., Lim, J., Kim, H., Seo, B., September 2007. A study of classification of the level of sleepiness for the drowsy driving prevention. IEEE, SICE Annual Conference, 3084-3089. es_ES
dc.description.references Daugman, J. G. (1985). Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. Journal of the Optical Society of America A, 2(7), 1160. doi:10.1364/josaa.2.001160 es_ES
dc.description.references de la Escalera, A., 2001. Visión por Computador, Fundamentos y Métodos. Vol. 1. Prentice Hall, Pearson Educación, Madrid. es_ES
dc.description.references Dong,W.,Wu, X., 2005. Driver fatigue detection based on distant eyelid. IEEE, Int. Workshop VLSI Design & Video Tech. es_ES
dc.description.references Doucet, A., N. Freitas de, Gordon, N., 2001. Sequential Monte Carlo Methods in Practice. Vol. 1. Springer-Verlag. es_ES
dc.description.references D‘Orazio, T., Leo, M., Distante, A., June 2004. Eye detection in face images for a driver vigilance system. IEEE, Intelligent Vehicle Symposium, 95-98. es_ES
dc.description.references Durrett, R., 1991. Probability: Theory and Examples. Vol. 1. Library of Congress Catalogingin-Publication Data. es_ES
dc.description.references Evgeniou, T., Pontil, M., Papageorgiou, C., Poggio, T., 2000. Image representations for object detection using kernel classifiers. In Asian Conference on Computer Vision. es_ES
dc.description.references Fletcher, L., Petersson, L., Zelinsky, A., 2003. Driver assistance systems based on vision in and out of vehicles. IEEE, Proceedings of Intelligent Vehicle Symposium, 322-327. es_ES
dc.description.references Freund, Y., Schapire, R., 1995. A decision-theorical generalization of online learning and an application to boosting. In Second European Conference on Computational Learning Theory. es_ES
dc.description.references Gejgus, P., Sperka, M., 2003. Face tracking in color video sequences. Association for Computing Machinery, 245-249. es_ES
dc.description.references Guo, J., Guo, X., 2009 July. Eye state recognition based on shape analysis and fuzzy logic. IEEE Intelligent Vehicle Symposium, 78-82. es_ES
dc.description.references Hagenmeyer, L., August 2007. Development of a multimodal, universal human-machine-interface for hypovigilance-management-systems. Ph.D. thesis, Mechanical Engineering, University of Stuttgart, Institute for Human Factors and Technology Management. es_ES
dc.description.references Hanmi, I., 2005. Drowsy truck drivers. Website, http://www.gohanmi.com/NREC-COPILOT.htm. es_ES
dc.description.references Hansen, D. W., & Qiang Ji. (2010). In the Eye of the Beholder: A Survey of Models for Eyes and Gaze. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(3), 478-500. doi:10.1109/tpami.2009.30 es_ES
dc.description.references Hayami, T., Matsunaga, K., Shidoji, K., Matsuki, Y., September 2002. Detecting drowsiness while driving by measuring eye movement - a pilot study. IEEE International Conference on Intelligent Transportation Systems, 156-161. es_ES
dc.description.references Hilario, C., Oct 2008. Detección de peatones en el espectro visible einfrarrojo para un sistema avanzado de asistencia a la conducción. Ph.D. thesis, Departamento de Ingeniería de Sistemas y Automática, Universidad. Carlos III de Madrid. es_ES
dc.description.references Horng, W., Chen, C., Chang, Y., 2004. Driver fatigue detection based on eye tracking and dynamic template matching. IEEE Proceedings of, International Conference on Networking, Sensing and Control. es_ES
dc.description.references Isard, M., & Blake, A. (1998). International Journal of Computer Vision, 29(1), 5-28. doi:10.1023/a:1008078328650 es_ES
dc.description.references Isard, M.A., September 1998. Visual motion analysis by probabilistic propagation of conditional density. Ph.D. thesis, Department of Engineering Science, University of Oxford. es_ES
dc.description.references Ji, Q., & Yang, X. (2001). Real Time Visual Cues Extraction for Monitoring Driver Vigilance. Computer Vision Systems, 107-124. doi:10.1007/3-540-48222-9_8 es_ES
dc.description.references Ji, Q. (2002). Real-Time Eye, Gaze, and Face Pose Tracking for Monitoring Driver Vigilance. Real-Time Imaging, 8(5), 357-377. doi:10.1006/rtim.2002.0279 es_ES
dc.description.references Ji, Q., Zhu, Z., Lan, P., Jun 2004. Real time nonintrusive monitoring and prediction of driver fatigue. IEEE, Transaction on Vehicular Technology 53.(4). es_ES
dc.description.references Jiangwei, C., Lisheng, J., Lie, G., Keyou, G., Rongben,W., June 2004a. Driver's eye state detecting method design based on eye geometry feature. IEEE, Intelligent Vehicles Symposium, 357-362. es_ES
dc.description.references Jiangwei, C., Lisheng, J., Lie, G., Keyou, G., Rongben, W., June 2004b. A monitoring method of driver mouth behaviour based on machine vision. IEEE, Intelligent Vehicles Symposium, 351-356. es_ES
dc.description.references Knipling, R., Wierwille, W., 1994. Vehicle-based drowsy driver detection: Current status and future prospects. IVSH America Fourth Annual Meeting. Koller-Meier, E., Ade, F., ???? Tracking multiple objects using the condensation algorithm. es_ES
dc.description.references Kücükay, F., Bergholz, J., 2005. Driver assistant systems. Lectures of Institute of Automatic Engineering. es_ES
dc.description.references Kutila, M., Dicember 2006. Methods for machine vision based driver monitoring applications. Ph.D. thesis, Tietotalo Building, Auditorium TB104. es_ES
dc.description.references Lisheng, J., Xuan, S., Yuying, J., Haijing, H., Yuqin, S., June 2009. Study on driver's mouth segmentation and location based on color space. IEEE Intelligent Vehicles Symposium, 500-506. es_ES
dc.description.references Liu, C., May 2004. Gabor-based kernel pca with fractional power polynomial models for face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligent 26 (5), 572-582. es_ES
dc.description.references Longhurst, G., ???? Understanding driver visual behaviour. Seeing Machine Pty Limited. es_ES
dc.description.references Loy, G., January 2003. Computer vision to see people: a basis for enhanced human computer interaction. Ph.D. thesis, Robotics Systems Laboratory, Department of Systems Engineering, Research School of Information Sciences and Engineering, Australian National University. es_ES
dc.description.references Loy, G., & Zelinsky, A. (2003). Fast radial symmetry for detecting points of interest. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25(8), 959-973. doi:10.1109/tpami.2003.1217601 es_ES
dc.description.references Martinez, W., Martinez, A., 2002. Computational Statistics Handbook with Matlab. Chapman & Hall=CRC. NHTSA, April 1998. Evaluation of techniques for ocular measurement as an index of fatigue and the basis for alertness management. Final Report DOT HS 808 762, National Highway Tra_c Safety Administration, Virginia. [22161,] USA. es_ES
dc.description.references Otsu, N., 1979. A threshold selection method from gray-level histograms. IEEE Trans. Systems, Man and Cybernetics, 62-66. es_ES
dc.description.references Ristic, B., Arulampalam, S., Gordon, N., 2004. Beyond the Kalman Filter: Particle Filters for Tracking Applications. Vol. 1. Artech House. es_ES
dc.description.references Rongben, W., Keyou, G., Shuming, S., Jiangwei, C., June 2003. A monitoring method of driver fatigue behavior based on machine vision. IEEE, Procedings on Intelligent Vehicles Symposium, 110-113. es_ES
dc.description.references Tian, Z., Qin, H., Octuber 2005. Real-time driver's eye state detection. IEEE, International Conference on Vehicular Electronics and Safety, 285-289. es_ES
dc.description.references Viola, P., Jones, M., 2002a. Fast and robust classification using asymmetric adaboost and a detector cascade. Advances in Neural Information Processing System, MIT Press, Cambrige, M.A.(14). es_ES
dc.description.references Viola, P., Jones, M., 2002b. Robust real-time object detection. International Journal of Computer Vision - to appear. es_ES
dc.description.references Vlacic, L., Parent, M., Harashima, F., 2001. Intelligent Vehicle Technologies. A division of Reed Educational and Professional Publishing Ltda. Library of Congress Cataloguing in Publication Data. es_ES
dc.description.references Wang, Q., Yang, J., Ren, M., Zheng, Y., June 2006. Driver fatigue detection: A survey. IEEE, Proceedings of the 6th World Congress on Intelligent Control and Automation, 8587-8591. es_ES
dc.description.references Wu, Y., Liu, H., Zha, H., June 2004. A new method of detection humand eyelids based on deformable templates. IEEE International Conference on Systems, Man and Cybernectics, 604-609. es_ES


This item appears in the following Collection(s)

Show simple item record