Mostrar el registro sencillo del ítem
dc.contributor.author | del Castillo, Mª D. | es_ES |
dc.contributor.author | Serrano, J. I. | es_ES |
dc.contributor.author | Ibáñez, J. | es_ES |
dc.contributor.author | Barrios, L. J. | es_ES |
dc.date.accessioned | 2020-05-28T17:03:42Z | |
dc.date.available | 2020-05-28T17:03:42Z | |
dc.date.issued | 2011-04-08 | |
dc.identifier.issn | 1697-7912 | |
dc.identifier.uri | http://hdl.handle.net/10251/144538 | |
dc.description.abstract | [EN] BCIs provide a channel for sending commands to the external environment by using electrophysiological measurements recording brain activity. The algorithm transforming the input signal into the output commands and the method used to extract the signal features for the algorithm are the key components for an optimum behaviour of the BCI. This paper presents a machine learning- based method to select these features and a classifier algorithm for building a predictive model from the EEg signal of patients with tremor. This model analyses and classifies the signal in a continous, asynchronous and adaptive way finding to identify the patient movement intention in order for a control system to cancel the tremor during the movement execution. | es_ES |
dc.description.abstract | [ES] Las Interfaces Cerebro-Computador proporcionan un canal para enviar órdenes al mundo exterior haciendo uso de medidas electrofisiológicas de la actividad cerebral. En este artículo se presenta la combinación de un método de selección de características y un algoritmo de clasificación probabilístico para construir el modelo predictivo de la intención anticipada de movimiento voluntario de pacientes con temblor a partir de un solo ensayo. Los resultados obtenidos muestran una potencial de discriminación del 70%, una tasa de error aceptable (6.6%) y una rápida respuesta (cada 250 ms), lo que indica que esta combinación es una buena base para la construcción de ICCs que no requieran entrenamiento del usuario de forma personalizada, asíncrona y adaptativa. | es_ES |
dc.description.sponsorship | Este trabajo ha sido realizado con la financiación de la Comisión de la Unión Europea dentro del 7 Programa Marco, para el proyecto con referencia ICT-2007-224051: “TREMOR: An ambulatory BCI-driven tremor suppression system based on functional electrical stimulation” y por el Ministerio de Ciencia e Innovación, con el proyecto IMAGENeuroMAPS (TEC2006-13966-C03-03) “Integración de resonancia magnética y electroencefalografía. Aplicación al fundamento y uso de ICCs por discapacitados”. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Revista Iberoamericana de Automática e Informática industrial | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Asynchronous BCI | es_ES |
dc.subject | User modelling | es_ES |
dc.subject | Adaption | es_ES |
dc.subject | Data mining | es_ES |
dc.subject | ERD | es_ES |
dc.subject | Interfaz Cerebro-Computador (ICC) asíncrona | es_ES |
dc.subject | Señal electroencefalográfica | es_ES |
dc.subject | Personalización | es_ES |
dc.subject | Ritmos sensorimotores | es_ES |
dc.subject | Minería de datos | es_ES |
dc.subject | Adaptación | es_ES |
dc.subject | Clasificación | es_ES |
dc.title | Metodología para la Creación de una Interfaz Cerebro-Computador Aplicada a la Identificación de la Intención de Movimiento | es_ES |
dc.title.alternative | Methodology for building Brain-Computer Interfaces applied to identify voluntary movement intention | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/S1697-7912(11)70030-9 | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/224051/EU/An ambulatory BCI-driven tremor suppression system based on functional electrical stimulation/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//TEC2006-13966-C03-03/ES/INTEGRACION DE RESONANCIA MAGNETICA Y ELECTROENCEFALOGRAFIA. APLICACION AL FUNDAMENTO Y USO DE INTERFACES CEREBRO COMPUTADOR POR DISCAPACITADOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Del Castillo, MD.; Serrano, JI.; Ibáñez, J.; Barrios, LJ. (2011). Metodología para la Creación de una Interfaz Cerebro-Computador Aplicada a la Identificación de la Intención de Movimiento. Revista Iberoamericana de Automática e Informática industrial. 8(2):93-102. https://doi.org/10.1016/S1697-7912(11)70030-9 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/S1697-7912(11)70030-9 | es_ES |
dc.description.upvformatpinicio | 93 | es_ES |
dc.description.upvformatpfin | 102 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 8 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 1697-7920 | |
dc.relation.pasarela | OJS\8581 | es_ES |
dc.contributor.funder | European Commission | es_ES |
dc.contributor.funder | Ministerio de Educación y Ciencia | es_ES |
dc.description.references | Bai, O., Lin, P., Vorbach, S., Li, J., Furlani, S., & Hallett, M. (2007). Exploration of computational methods for classification of movement intention during human voluntary movement from single trial EEG. Clinical Neurophysiology, 118(12), 2637-2655. doi:10.1016/j.clinph.2007.08.025 | es_ES |
dc.description.references | Bashashati, A., Fatourechi, M., Ward, R. K., & Birch, G. E. (2007). A survey of signal processing algorithms in brain–computer interfaces based on electrical brain signals. Journal of Neural Engineering, 4(2), R32-R57. doi:10.1088/1741-2560/4/2/r03 | es_ES |
dc.description.references | Daly, J. J., & Wolpaw, J. R. (2008). Brain–computer interfaces in neurological rehabilitation. The Lancet Neurology, 7(11), 1032-1043. doi:10.1016/s1474-4422(08)70223-0 | es_ES |
dc.description.references | Donchin, E., Spencer, K. M., & Wijesinghe, R. (2000). The mental prosthesis: assessing the speed of a P300-based brain-computer interface. IEEE Transactions on Rehabilitation Engineering, 8(2), 174-179. doi:10.1109/86.847808 | es_ES |
dc.description.references | Donoghue, J. P. (2002). Connecting cortex to machines: recent advances in brain interfaces. Nature Neuroscience, 5(S11), 1085-1088. doi:10.1038/nn947 | es_ES |
dc.description.references | Farina, D., Nascimento, O. F. do, Lucas, M.-F., & Doncarli, C. (2007). Optimization of wavelets for classification of movement-related cortical potentials generated by variation of force-related parameters. Journal of Neuroscience Methods, 162(1-2), 357-363. doi:10.1016/j.jneumeth.2007.01.011 | es_ES |
dc.description.references | Farwell, L. A., & Donchin, E. (1988). Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalography and Clinical Neurophysiology, 70(6), 510-523. doi:10.1016/0013-4694(88)90149-6 | es_ES |
dc.description.references | Fazli, S., Popescu, F., Danóczy, M., Blankertz, B., Müller, K.-R., & Grozea, C. (2009). Subject-independent mental state classification in single trials. Neural Networks, 22(9), 1305-1312. doi:10.1016/j.neunet.2009.06.003 | es_ES |
dc.description.references | Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). The KDD process for extracting useful knowledge from volumes of data. Communications of the ACM, 39(11), 27-34. doi:10.1145/240455.240464 | es_ES |
dc.description.references | Flexer, A., & Bauer, H. (2000). Monitoring human information processing via intelligent data analysis of EEG recordings. Intelligent Data Analysis, 4(2), 113-128. doi:10.3233/ida-2000-4203 | es_ES |
dc.description.references | Graimann, B., Huggins, J. ., Levine, S. ., & Pfurtscheller, G. (2002). Visualization of significant ERD/ERS patterns in multichannel EEG and ECoG data. Clinical Neurophysiology, 113(1), 43-47. doi:10.1016/s1388-2457(01)00697-6 | es_ES |
dc.description.references | Gu, Y., Dremstrup, K., & Farina, D. (2009). Single-trial discrimination of type and speed of wrist movements from EEG recordings. Clinical Neurophysiology, 120(8), 1596-1600. doi:10.1016/j.clinph.2009.05.006 | es_ES |
dc.description.references | Isa, T., Fetz, E. E., & Müller, K.-R. (2009). Recent advances in brain–machine interfaces. Neural Networks, 22(9), 1201-1202. doi:10.1016/j.neunet.2009.10.003 | es_ES |
dc.description.references | Kübler, A., Kotchoubey, B., Kaiser, J., Wolpaw, J. R., & Birbaumer, N. (2001). Brain–computer communication: Unlocking the locked in. Psychological Bulletin, 127(3), 358-375. doi:10.1037/0033-2909.127.3.358 | es_ES |
dc.description.references | Kutas, M., & Hillyard, S. A. (1984). Brain potentials during reading reflect word expectancy and semantic association. Nature, 307(5947), 161-163. doi:10.1038/307161a0 | es_ES |
dc.description.references | Mason, S. G., & Birch, G. E. (2000). A brain-controlled switch for asynchronous control applications. IEEE Transactions on Biomedical Engineering, 47(10), 1297-1307. doi:10.1109/10.871402 | es_ES |
dc.description.references | Müller-Putz, G. R., Scherer, R., Pfurtscheller, G., & Rupp, R. (2005). EEG-based neuroprosthesis control: A step towards clinical practice. Neuroscience Letters, 382(1-2), 169-174. doi:10.1016/j.neulet.2005.03.021 | es_ES |
dc.description.references | Pfurtscheller, G. (1977). Graphical display and statistical evaluation of event-related desynchronization (ERD). Electroencephalography and Clinical Neurophysiology, 43(5), 757-760. doi:10.1016/0013-4694(77)90092-x | es_ES |
dc.description.references | Pfurtscheller, G., & Aranibar, A. (1979). Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement. Electroencephalography and Clinical Neurophysiology, 46(2), 138-146. doi:10.1016/0013-4694(79)90063-4 | es_ES |
dc.description.references | Pfurtscheller, G. (1992). Event-related synchronization (ERS): an electrophysiological correlate of cortical areas at rest. Electroencephalography and Clinical Neurophysiology, 83(1), 62-69. doi:10.1016/0013-4694(92)90133-3 | es_ES |
dc.description.references | Pfurtscheller, G., Sager, W., & Wege, W. (1981). Correlations between CT scan and sensorimotor EEG rhythms in patients with cerebrovascular disorders. Electroencephalography and Clinical Neurophysiology, 52(5), 473-485. doi:10.1016/0013-4694(81)90032-8 | es_ES |
dc.description.references | Pfurtscheller, G., Neuper, C., Guger, C., Harkam, W., Ramoser, H., Schlogl, A., … Pregenzer, M. (2000). Current trends in Graz brain-computer interface (BCI) research. IEEE Transactions on Rehabilitation Engineering, 8(2), 216-219. doi:10.1109/86.847821 | es_ES |
dc.description.references | Pfurtscheller, G., & Neuper, C. (1994). Event-related synchronization of mu rhythm in the EEG over the cortical hand area in man. Neuroscience Letters, 174(1), 93-96. doi:10.1016/0304-3940(94)90127-9 | es_ES |
dc.description.references | Pfurtscheller, G., & Lopes da Silva, F. H. (1999). Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical Neurophysiology, 110(11), 1842-1857. doi:10.1016/s1388-2457(99)00141-8 | es_ES |
dc.description.references | Pfurtscheller, G., Brunner, C., Schlögl, A., & Lopes da Silva, F. H. (2006). Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage, 31(1), 153-159. doi:10.1016/j.neuroimage.2005.12.003 | es_ES |
dc.description.references | Sannelli, C., Braun, M., & Müller, K.-R. (2009). Improving BCI performance by task-related trial pruning. Neural Networks, 22(9), 1295-1304. doi:10.1016/j.neunet.2009.08.006 | es_ES |
dc.description.references | Serrano J.I., del Castillo M.D. (2005). BCI Competition III. http://www.bbci.de/competition/iii/results/index.html | es_ES |
dc.description.references | Townsend, G., Graimann, B., & Pfurtscheller, G. (2004). Continuous EEG Classification During Motor Imagery—Simulation of an Asynchronous BCI. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 12(2), 258-265. doi:10.1109/tnsre.2004.827220 | es_ES |
dc.description.references | Townsend, G., Graimann, B., & Pfurtscheller, G. (2006). A Comparison of Common Spatial Patterns With Complex Band Power Features in a Four-Class BCI Experiment. IEEE Transactions on Biomedical Engineering, 53(4), 642-651. doi:10.1109/tbme.2006.870237 | es_ES |
dc.description.references | Wang, Y., Zhang, Z., Li, Y., Gao, X., Gao, S., & Yang, F. (2004). BCI Competition 2003—Data Set IV: An Algorithm Based on CSSD and FDA for Classifying Single-Trial EEG. IEEE Transactions on Biomedical Engineering, 51(6), 1081-1086. doi:10.1109/tbme.2004.826697 | es_ES |
dc.description.references | Wolpaw, J. R., Birbaumer, N., Heetderks, W. J., McFarland, D. J., Peckham, P. H., Schalk, G., … Vaughan, T. M. (2000). Brain-computer interface technology: a review of the first international meeting. IEEE Transactions on Rehabilitation Engineering, 8(2), 164-173. doi:10.1109/tre.2000.847807 | es_ES |
dc.description.references | Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain–computer interfaces for communication and control. Clinical Neurophysiology, 113(6), 767-791. doi:10.1016/s1388-2457(02)00057-3 | es_ES |
dc.description.references | Wolpaw, J. R., & McFarland, D. J. (2004). Control of a two-dimensional movement signal by a noninvasive brain-computer interface in humans. Proceedings of the National Academy of Sciences, 101(51), 17849-17854. doi:10.1073/pnas.0403504101 | es_ES |
dc.description.references | Yang, J., & Honavar, V. (1998). Feature subset selection using a genetic algorithm. IEEE Intelligent Systems, 13(2), 44-49. doi:10.1109/5254.671091 | es_ES |
dc.description.references | Yom-Tov, E., & Inbar, G. F. (2003). Detection of movement-related potentials from the electro-encephalogram for possible use in a brain-computer interface. Medical & Biological Engineering & Computing, 41(1), 85-93. doi:10.1007/bf02343543 | es_ES |