Altintas, Y., & Weck, M. (2004). Chatter Stability of Metal Cutting and Grinding. CIRP Annals, 53(2), 619-642. doi:10.1016/s0007-8506(07)60032-8
Benardos, P. G., & Vosniakos, G.-C. (2003). Predicting surface roughness in machining: a review. International Journal of Machine Tools and Manufacture, 43(8), 833-844. doi:10.1016/s0890-6955(03)00059-2
Correa, M., Bielza, C., Ramirez, M. de J., & Alique, J. R. (2008). A Bayesian network model for surface roughness prediction in the machining process. International Journal of Systems Science, 39(12), 1181-1192. doi:10.1080/00207720802344683
[+]
Altintas, Y., & Weck, M. (2004). Chatter Stability of Metal Cutting and Grinding. CIRP Annals, 53(2), 619-642. doi:10.1016/s0007-8506(07)60032-8
Benardos, P. G., & Vosniakos, G.-C. (2003). Predicting surface roughness in machining: a review. International Journal of Machine Tools and Manufacture, 43(8), 833-844. doi:10.1016/s0890-6955(03)00059-2
Correa, M., Bielza, C., Ramirez, M. de J., & Alique, J. R. (2008). A Bayesian network model for surface roughness prediction in the machining process. International Journal of Systems Science, 39(12), 1181-1192. doi:10.1080/00207720802344683
Correa, M., Bielza, C., & Pamies-Teixeira, J. (2009). Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process. Expert Systems with Applications, 36(3), 7270-7279. doi:10.1016/j.eswa.2008.09.024
Chow, C., & Liu, C. (1968). Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, 14(3), 462-467. doi:10.1109/tit.1968.1054142
Ezugwu, E. O., Fadare, D. A., Bonney, J., Da Silva, R. B., & Sales, W. F. (2005). Modelling the correlation between cutting and process parameters in high-speed machining of Inconel 718 alloy using an artificial neural network. International Journal of Machine Tools and Manufacture, 45(12-13), 1375-1385. doi:10.1016/j.ijmachtools.2005.02.004
Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Machine Learning, 29(2/3), 131-163. doi:10.1023/a:1007465528199
Gajate, A., & Haber, R. E. (2009). Control Neuroborroso en Red. Aplicación al Proceso de Taladrado de Alto Rendimiento. Revista Iberoamericana de Automática e Informática Industrial RIAI, 6(1), 31-38. doi:10.1016/s1697-7912(09)70074-3
Hao, W., Zhu, X., Li, X., & Turyagyenda, G. (2006). Prediction of cutting force for self-propelled rotary tool using artificial neural networks. Journal of Materials Processing Technology, 180(1-3), 23-29. doi:10.1016/j.jmatprotec.2006.04.123
Ko, T. J., Park, J. W., Kim, H. S., & Kim, S. H. (2006). On-machine measurement using a noncontact sensor based on a CAD model. The International Journal of Advanced Manufacturing Technology, 32(7-8), 739-746. doi:10.1007/s00170-005-0383-4
Lee, S. S., & Chen, J. C. (2003). On-line surface roughness recognition system using artificial neural networks system in turning operations. The International Journal of Advanced Manufacturing Technology, 22(7-8), 498-509. doi:10.1007/s00170-002-1511-z
Lela, B., Bajić, D., & Jozić, S. (2008). Regression analysis, support vector machines, and Bayesian neural network approaches to modeling surface roughness in face milling. The International Journal of Advanced Manufacturing Technology, 42(11-12), 1082-1088. doi:10.1007/s00170-008-1678-z
Ozel, T., Correia, A. E., & Davim, J. P. (2009). Neural network process modelling for turning of steel parts using conventional and wiper inserts. International Journal of Materials and Product Technology, 35(1/2), 246. doi:10.1504/ijmpt.2009.025230
Reddy, B. S., Padmanabhan, G., & Reddy, K. V. K. (2008). Surface Roughness Prediction Techniques for CNC Turning. Asian Journal of Scientific Research, 1(3), 256-264. doi:10.3923/ajsr.2008.256.264
Zuperl, U., & Cus, F. (2003). Optimization of cutting conditions during cutting by using neural networks. Robotics and Computer-Integrated Manufacturing, 19(1-2), 189-199. doi:10.1016/s0736-5845(02)00079-0
[-]