- -

Modelo Pre-Proceso de predicción de la Calidad Superficial en Fresado a Alta Velocidad basado en Softcomputing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modelo Pre-Proceso de predicción de la Calidad Superficial en Fresado a Alta Velocidad basado en Softcomputing

Mostrar el registro completo del ítem

Flores, VM.; Correa, M.; Alique, JR. (2011). Modelo Pre-Proceso de predicción de la Calidad Superficial en Fresado a Alta Velocidad basado en Softcomputing. Revista Iberoamericana de Automática e Informática industrial. 8(1):38-43. https://doi.org/10.1016/S1697-7912(11)70006-1

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144543

Ficheros en el ítem

Metadatos del ítem

Título: Modelo Pre-Proceso de predicción de la Calidad Superficial en Fresado a Alta Velocidad basado en Softcomputing
Otro titulo: A pre-process model for surface finish prediction in high speed milling based on Softcomputing
Autor: Flores, Víctor M. Correa, Maritza Alique, José R.
Fecha difusión:
Resumen:
[EN] The surface quality is one of the most careful elements in the manufacture of parts in various industrial fields such as aeronautics and automotive. Often the surface quality is estimated according to the surface ...[+]


[ES] La calidad superficial es uno de los aspectos más cuidados en la fabricación de piezas. Esta calidad se estima frecuentemente en función a la rugosidad superficial. Trabajos que incorporan técnicas de softcomputing ...[+]
Palabras clave: High Speed Machining , High Speed milling process , Softcomputing , Bayesians networks , Predictive models , Mecanizado a alta velocidad , Proceso de fresado a alta velocidad , Redes Bayesianas , Modelos predictivos
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Revista Iberoamericana de Automática e Informática industrial. (issn: 1697-7912 ) (eissn: 1697-7920 )
DOI: 10.1016/S1697-7912(11)70006-1
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.1016/S1697-7912(11)70006-1
Tipo: Artículo

References

Altintas, Y., & Weck, M. (2004). Chatter Stability of Metal Cutting and Grinding. CIRP Annals, 53(2), 619-642. doi:10.1016/s0007-8506(07)60032-8

Benardos, P. G., & Vosniakos, G.-C. (2003). Predicting surface roughness in machining: a review. International Journal of Machine Tools and Manufacture, 43(8), 833-844. doi:10.1016/s0890-6955(03)00059-2

Correa, M., Bielza, C., Ramirez, M. de J., & Alique, J. R. (2008). A Bayesian network model for surface roughness prediction in the machining process. International Journal of Systems Science, 39(12), 1181-1192. doi:10.1080/00207720802344683 [+]
Altintas, Y., & Weck, M. (2004). Chatter Stability of Metal Cutting and Grinding. CIRP Annals, 53(2), 619-642. doi:10.1016/s0007-8506(07)60032-8

Benardos, P. G., & Vosniakos, G.-C. (2003). Predicting surface roughness in machining: a review. International Journal of Machine Tools and Manufacture, 43(8), 833-844. doi:10.1016/s0890-6955(03)00059-2

Correa, M., Bielza, C., Ramirez, M. de J., & Alique, J. R. (2008). A Bayesian network model for surface roughness prediction in the machining process. International Journal of Systems Science, 39(12), 1181-1192. doi:10.1080/00207720802344683

Correa, M., Bielza, C., & Pamies-Teixeira, J. (2009). Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process. Expert Systems with Applications, 36(3), 7270-7279. doi:10.1016/j.eswa.2008.09.024

Chow, C., & Liu, C. (1968). Approximating discrete probability distributions with dependence trees. IEEE Transactions on Information Theory, 14(3), 462-467. doi:10.1109/tit.1968.1054142

Ezugwu, E. O., Fadare, D. A., Bonney, J., Da Silva, R. B., & Sales, W. F. (2005). Modelling the correlation between cutting and process parameters in high-speed machining of Inconel 718 alloy using an artificial neural network. International Journal of Machine Tools and Manufacture, 45(12-13), 1375-1385. doi:10.1016/j.ijmachtools.2005.02.004

Friedman, N., Geiger, D., & Goldszmidt, M. (1997). Machine Learning, 29(2/3), 131-163. doi:10.1023/a:1007465528199

Gajate, A., & Haber, R. E. (2009). Control Neuroborroso en Red. Aplicación al Proceso de Taladrado de Alto Rendimiento. Revista Iberoamericana de Automática e Informática Industrial RIAI, 6(1), 31-38. doi:10.1016/s1697-7912(09)70074-3

Hao, W., Zhu, X., Li, X., & Turyagyenda, G. (2006). Prediction of cutting force for self-propelled rotary tool using artificial neural networks. Journal of Materials Processing Technology, 180(1-3), 23-29. doi:10.1016/j.jmatprotec.2006.04.123

Ko, T. J., Park, J. W., Kim, H. S., & Kim, S. H. (2006). On-machine measurement using a noncontact sensor based on a CAD model. The International Journal of Advanced Manufacturing Technology, 32(7-8), 739-746. doi:10.1007/s00170-005-0383-4

Lee, S. S., & Chen, J. C. (2003). On-line surface roughness recognition system using artificial neural networks system in turning operations. The International Journal of Advanced Manufacturing Technology, 22(7-8), 498-509. doi:10.1007/s00170-002-1511-z

Lela, B., Bajić, D., & Jozić, S. (2008). Regression analysis, support vector machines, and Bayesian neural network approaches to modeling surface roughness in face milling. The International Journal of Advanced Manufacturing Technology, 42(11-12), 1082-1088. doi:10.1007/s00170-008-1678-z

Ozel, T., Correia, A. E., & Davim, J. P. (2009). Neural network process modelling for turning of steel parts using conventional and wiper inserts. International Journal of Materials and Product Technology, 35(1/2), 246. doi:10.1504/ijmpt.2009.025230

Reddy, B. S., Padmanabhan, G., & Reddy, K. V. K. (2008). Surface Roughness Prediction Techniques for CNC Turning. Asian Journal of Scientific Research, 1(3), 256-264. doi:10.3923/ajsr.2008.256.264

Zuperl, U., & Cus, F. (2003). Optimization of cutting conditions during cutting by using neural networks. Robotics and Computer-Integrated Manufacturing, 19(1-2), 189-199. doi:10.1016/s0736-5845(02)00079-0

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem