- -

Exploring the use of traditional heat transfer functions for energy simulation of buildings using discrete events and quantized-state-based integration

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Exploring the use of traditional heat transfer functions for energy simulation of buildings using discrete events and quantized-state-based integration

Mostrar el registro completo del ítem

Soto Francés, VM.; Sarabia-Escrivá, EJ.; Pinazo Ojer, JM.; Martínez, PJ. (2020). Exploring the use of traditional heat transfer functions for energy simulation of buildings using discrete events and quantized-state-based integration. Journal of Building Performance Simulation. 13(3):247-263. https://doi.org/10.1080/19401493.2020.1723704

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144561

Ficheros en el ítem

Metadatos del ítem

Título: Exploring the use of traditional heat transfer functions for energy simulation of buildings using discrete events and quantized-state-based integration
Autor: Soto Francés, Víctor Manuel Sarabia-Escrivá, Emilio José Pinazo Ojer, José Manuel Martínez, Pedro J.
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
[EN] The target of the paper is to study how to devise an efficient discrete-event model for the yearly energy simulation of buildings. Conventionally, software tools use time-driven schemes and many components must be ...[+]
Palabras clave: Successive state transition method , Heat transfer , Discrete event simulation , DEVS , Buildings , Energy simulation
Derechos de uso: Cerrado
Fuente:
Journal of Building Performance Simulation. (issn: 1940-1493 )
DOI: 10.1080/19401493.2020.1723704
Editorial:
Taylor & Francis
Versión del editor: https://doi.org/10.1080/19401493.2020.1723704
Tipo: Artículo

References

Bergero, F. M., Casella, F., Kofman, E., & Fernández, J. (2017). On the efficiency of quantization-based integration methods for building simulation. Building Simulation, 11(2), 405-418. doi:10.1007/s12273-017-0400-1

Bergero, F., & Kofman, E. (2010). PowerDEVS: a tool for hybrid system modeling and real-time simulation. SIMULATION, 87(1-2), 113-132. doi:10.1177/0037549710368029

Chen, Y., & Wang, S. (2001). Frequency-domain regression method for estimating CTF models of building multilayer constructions. Applied Mathematical Modelling, 25(7), 579-592. doi:10.1016/s0307-904x(00)00067-6 [+]
Bergero, F. M., Casella, F., Kofman, E., & Fernández, J. (2017). On the efficiency of quantization-based integration methods for building simulation. Building Simulation, 11(2), 405-418. doi:10.1007/s12273-017-0400-1

Bergero, F., & Kofman, E. (2010). PowerDEVS: a tool for hybrid system modeling and real-time simulation. SIMULATION, 87(1-2), 113-132. doi:10.1177/0037549710368029

Chen, Y., & Wang, S. (2001). Frequency-domain regression method for estimating CTF models of building multilayer constructions. Applied Mathematical Modelling, 25(7), 579-592. doi:10.1016/s0307-904x(00)00067-6

Fernández, J., & Kofman, E. (2014). A stand-alone quantized state system solver for continuous system simulation. SIMULATION, 90(7), 782-799. doi:10.1177/0037549714536255

Fernandez, J., Kofman, E., & Bergero, F. (2017). A parallel Quantized State System Solver for ODEs. Journal of Parallel and Distributed Computing, 106, 14-30. doi:10.1016/j.jpdc.2017.02.011

Soto Frances, V. M., Sarabia Escriva, E. J., & Pinazo Ojer, J. M. (2014). Discrete event heat transfer simulation of a room. International Journal of Thermal Sciences, 75, 105-115. doi:10.1016/j.ijthermalsci.2013.07.024

Soto Frances, V. M., Sarabia Escriva, E. J., & Pinazo Ojer, J. M. (2015). Discrete event heat transfer simulation of a room using a Quantized State System of order two, QSS2 integrator. International Journal of Thermal Sciences, 97, 82-93. doi:10.1016/j.ijthermalsci.2015.06.006

Frances, V. M. S., Escriva, E. J. S., & Ojer, J. M. P. (2016). A hygrothermal dynamic zone model for building energy simulation. Energy and Buildings, 133, 389-402. doi:10.1016/j.enbuild.2016.10.002

Gunay, H. B., O’Brien, W., Beausoleil-Morrison, I., Goldstein, R., Breslav, S., & Khan, A. (2014). Coupling stochastic occupant models to building performance simulation using the discrete event system specification formalism. Journal of Building Performance Simulation, 7(6), 457-478. doi:10.1080/19401493.2013.866695

Hittle, D. C., & Bishop, R. (1983). An improved root-finding procedure for use in calculating transient heat flow through multilayered slabs. International Journal of Heat and Mass Transfer, 26(11), 1685-1693. doi:10.1016/s0017-9310(83)80089-1

Ko, Y.-S., & No, S. T. (2015). A Study on Comparison of Building Energy Simulation and Measurement Results for a City Hall. Journal of Building Construction and Planning Research, 03(01), 1-9. doi:10.4236/jbcpr.2015.31001

Li, N., Yang, Z., Becerik-Gerber, B., Tang, C., & Chen, N. (2015). Why is the reliability of building simulation limited as a tool for evaluating energy conservation measures? Applied Energy, 159, 196-205. doi:10.1016/j.apenergy.2015.09.001

Maestre, I. R., Cubillas, P. R., & Pérez-Lombard, L. (2010). Transient heat conduction in multi-layer walls: An efficient strategy for Laplace’s method. Energy and Buildings, 42(4), 541-546. doi:10.1016/j.enbuild.2009.10.023

Pinazo Ojer, J. M., Soto Frances, V. M., Sarabia Escriva, E., & Soto Frances, L. (2015). Thermal response factors to a 2nd order shaping function for the calculation of the 1D heat conduction in a multi-layered slab. International Journal of Heat and Mass Transfer, 88, 579-590. doi:10.1016/j.ijheatmasstransfer.2015.04.110

Pakanen, J. (1996). CONDUCTION OF HEAT THROUGH ONE- AND MULTILAYER SLABS: A DIFFERENTIAL-DIFFERENCE APPROACH. Numerical Heat Transfer, Part B: Fundamentals, 30(1), 67-91. doi:10.1080/10407799608915072

Trčka, M., Hensen, J. L. M., & Wetter, M. (2009). Co-simulation of innovative integrated HVAC systems in buildings. Journal of Building Performance Simulation, 2(3), 209-230. doi:10.1080/19401490903051959

Wainer, G., & Mosterman, P. (Eds.). (2010). Discrete-Event Modeling and Simulation. Computational Analysis, Synthesis, & Design Dynamic Systems. doi:10.1201/b10412

Wang, H., & Zhai, Z. (John). (2016). Advances in building simulation and computational techniques: A review between 1987 and 2014. Energy and Buildings, 128, 319-335. doi:10.1016/j.enbuild.2016.06.080

URANO, Y., & WATANABE, T. (1981). AN ANALYSIS OF MULTI-LAYER WALL HEAT TRANSFER BY STATE TRANSITION MATRIX : Part 1 An Approximate Transfer Functions Model and its Accuracy. Transactions of the Architectural Institute of Japan, 305(0), 97-111. doi:10.3130/aijsaxx.305.0_97

URANO, Y., & WATANABE, T. (1982). AN ANALYSIS OF MULTI-LAYER WALL HEAT TRANSFER BY STATE TRANSITION MATRIX : Part 2 A Successive Calculation Method and its Accuracy. Transactions of the Architectural Institute of Japan, 311(0), 57-66. doi:10.3130/aijsaxx.311.0_57

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem