Mostrar el registro sencillo del ítem
dc.contributor.author | Soto Francés, Víctor Manuel | es_ES |
dc.contributor.author | Sarabia-Escrivá, Emilio José | es_ES |
dc.contributor.author | Pinazo Ojer, José Manuel | es_ES |
dc.contributor.author | Martínez, Pedro J. | es_ES |
dc.date.accessioned | 2020-05-29T03:32:26Z | |
dc.date.available | 2020-05-29T03:32:26Z | |
dc.date.issued | 2020-05-03 | es_ES |
dc.identifier.issn | 1940-1493 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/144561 | |
dc.description.abstract | [EN] The target of the paper is to study how to devise an efficient discrete-event model for the yearly energy simulation of buildings. Conventionally, software tools use time-driven schemes and many components must be computed at every sampling time-point. Event-driven simulation aims at lowering this burden, by calling only those components whose state is evolving quickly. The article explores a model based on DEVS formalism and Quantized State Systems (QSS) techniques. Within this paradigm shift, our strategy was to reuse as much widely accepted knowledge as possible. One immediate difficulty was, that the well-known conduction heat transfer function (CHTF) of multi-layered walls is not suitable for DEVS in its traditional form since it is constrained to sample at a fixed time step. Instead, the paper introduces a non-conventional method: the Successive State Transition method (SST). Its distinguishing traits are: it allows variable time steps, has high accuracy and its computational workload adapts to the elapsed time between transitions. Unfortunately, although we found that SST and QSS work well together, the paper shows that the aforementioned transfer function is not adequate for event-driven simulations. Based on the paper outcomes, we propose a workaround for further research: a new transfer function, relating the conduction heat flux (input) to the time derivative of the wall superficial temperature (output) (recall that the traditional input-output relationship: superficial temperature and conduction heat flux, respectively). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Taylor & Francis | es_ES |
dc.relation.ispartof | Journal of Building Performance Simulation | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Successive state transition method | es_ES |
dc.subject | Heat transfer | es_ES |
dc.subject | Discrete event simulation | es_ES |
dc.subject | DEVS | es_ES |
dc.subject | Buildings | es_ES |
dc.subject | Energy simulation | es_ES |
dc.subject.classification | MAQUINAS Y MOTORES TERMICOS | es_ES |
dc.title | Exploring the use of traditional heat transfer functions for energy simulation of buildings using discrete events and quantized-state-based integration | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1080/19401493.2020.1723704 | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada | es_ES |
dc.description.bibliographicCitation | Soto Francés, VM.; Sarabia-Escrivá, EJ.; Pinazo Ojer, JM.; Martínez, PJ. (2020). Exploring the use of traditional heat transfer functions for energy simulation of buildings using discrete events and quantized-state-based integration. Journal of Building Performance Simulation. 13(3):247-263. https://doi.org/10.1080/19401493.2020.1723704 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1080/19401493.2020.1723704 | es_ES |
dc.description.upvformatpinicio | 247 | es_ES |
dc.description.upvformatpfin | 263 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 13 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\404529 | es_ES |
dc.description.references | Bergero, F. M., Casella, F., Kofman, E., & Fernández, J. (2017). On the efficiency of quantization-based integration methods for building simulation. Building Simulation, 11(2), 405-418. doi:10.1007/s12273-017-0400-1 | es_ES |
dc.description.references | Bergero, F., & Kofman, E. (2010). PowerDEVS: a tool for hybrid system modeling and real-time simulation. SIMULATION, 87(1-2), 113-132. doi:10.1177/0037549710368029 | es_ES |
dc.description.references | Chen, Y., & Wang, S. (2001). Frequency-domain regression method for estimating CTF models of building multilayer constructions. Applied Mathematical Modelling, 25(7), 579-592. doi:10.1016/s0307-904x(00)00067-6 | es_ES |
dc.description.references | Fernández, J., & Kofman, E. (2014). A stand-alone quantized state system solver for continuous system simulation. SIMULATION, 90(7), 782-799. doi:10.1177/0037549714536255 | es_ES |
dc.description.references | Fernandez, J., Kofman, E., & Bergero, F. (2017). A parallel Quantized State System Solver for ODEs. Journal of Parallel and Distributed Computing, 106, 14-30. doi:10.1016/j.jpdc.2017.02.011 | es_ES |
dc.description.references | Soto Frances, V. M., Sarabia Escriva, E. J., & Pinazo Ojer, J. M. (2014). Discrete event heat transfer simulation of a room. International Journal of Thermal Sciences, 75, 105-115. doi:10.1016/j.ijthermalsci.2013.07.024 | es_ES |
dc.description.references | Soto Frances, V. M., Sarabia Escriva, E. J., & Pinazo Ojer, J. M. (2015). Discrete event heat transfer simulation of a room using a Quantized State System of order two, QSS2 integrator. International Journal of Thermal Sciences, 97, 82-93. doi:10.1016/j.ijthermalsci.2015.06.006 | es_ES |
dc.description.references | Frances, V. M. S., Escriva, E. J. S., & Ojer, J. M. P. (2016). A hygrothermal dynamic zone model for building energy simulation. Energy and Buildings, 133, 389-402. doi:10.1016/j.enbuild.2016.10.002 | es_ES |
dc.description.references | Gunay, H. B., O’Brien, W., Beausoleil-Morrison, I., Goldstein, R., Breslav, S., & Khan, A. (2014). Coupling stochastic occupant models to building performance simulation using the discrete event system specification formalism. Journal of Building Performance Simulation, 7(6), 457-478. doi:10.1080/19401493.2013.866695 | es_ES |
dc.description.references | Hittle, D. C., & Bishop, R. (1983). An improved root-finding procedure for use in calculating transient heat flow through multilayered slabs. International Journal of Heat and Mass Transfer, 26(11), 1685-1693. doi:10.1016/s0017-9310(83)80089-1 | es_ES |
dc.description.references | Ko, Y.-S., & No, S. T. (2015). A Study on Comparison of Building Energy Simulation and Measurement Results for a City Hall. Journal of Building Construction and Planning Research, 03(01), 1-9. doi:10.4236/jbcpr.2015.31001 | es_ES |
dc.description.references | Li, N., Yang, Z., Becerik-Gerber, B., Tang, C., & Chen, N. (2015). Why is the reliability of building simulation limited as a tool for evaluating energy conservation measures? Applied Energy, 159, 196-205. doi:10.1016/j.apenergy.2015.09.001 | es_ES |
dc.description.references | Maestre, I. R., Cubillas, P. R., & Pérez-Lombard, L. (2010). Transient heat conduction in multi-layer walls: An efficient strategy for Laplace’s method. Energy and Buildings, 42(4), 541-546. doi:10.1016/j.enbuild.2009.10.023 | es_ES |
dc.description.references | Pinazo Ojer, J. M., Soto Frances, V. M., Sarabia Escriva, E., & Soto Frances, L. (2015). Thermal response factors to a 2nd order shaping function for the calculation of the 1D heat conduction in a multi-layered slab. International Journal of Heat and Mass Transfer, 88, 579-590. doi:10.1016/j.ijheatmasstransfer.2015.04.110 | es_ES |
dc.description.references | Pakanen, J. (1996). CONDUCTION OF HEAT THROUGH ONE- AND MULTILAYER SLABS: A DIFFERENTIAL-DIFFERENCE APPROACH. Numerical Heat Transfer, Part B: Fundamentals, 30(1), 67-91. doi:10.1080/10407799608915072 | es_ES |
dc.description.references | Trčka, M., Hensen, J. L. M., & Wetter, M. (2009). Co-simulation of innovative integrated HVAC systems in buildings. Journal of Building Performance Simulation, 2(3), 209-230. doi:10.1080/19401490903051959 | es_ES |
dc.description.references | Wainer, G., & Mosterman, P. (Eds.). (2010). Discrete-Event Modeling and Simulation. Computational Analysis, Synthesis, & Design Dynamic Systems. doi:10.1201/b10412 | es_ES |
dc.description.references | Wang, H., & Zhai, Z. (John). (2016). Advances in building simulation and computational techniques: A review between 1987 and 2014. Energy and Buildings, 128, 319-335. doi:10.1016/j.enbuild.2016.06.080 | es_ES |
dc.description.references | URANO, Y., & WATANABE, T. (1981). AN ANALYSIS OF MULTI-LAYER WALL HEAT TRANSFER BY STATE TRANSITION MATRIX : Part 1 An Approximate Transfer Functions Model and its Accuracy. Transactions of the Architectural Institute of Japan, 305(0), 97-111. doi:10.3130/aijsaxx.305.0_97 | es_ES |
dc.description.references | URANO, Y., & WATANABE, T. (1982). AN ANALYSIS OF MULTI-LAYER WALL HEAT TRANSFER BY STATE TRANSITION MATRIX : Part 2 A Successive Calculation Method and its Accuracy. Transactions of the Architectural Institute of Japan, 311(0), 57-66. doi:10.3130/aijsaxx.311.0_57 | es_ES |
dc.subject.ods | 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos | es_ES |