- -

Exploring the use of traditional heat transfer functions for energy simulation of buildings using discrete events and quantized-state-based integration

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Exploring the use of traditional heat transfer functions for energy simulation of buildings using discrete events and quantized-state-based integration

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Soto Francés, Víctor Manuel es_ES
dc.contributor.author Sarabia-Escrivá, Emilio José es_ES
dc.contributor.author Pinazo Ojer, José Manuel es_ES
dc.contributor.author Martínez, Pedro J. es_ES
dc.date.accessioned 2020-05-29T03:32:26Z
dc.date.available 2020-05-29T03:32:26Z
dc.date.issued 2020-05-03 es_ES
dc.identifier.issn 1940-1493 es_ES
dc.identifier.uri http://hdl.handle.net/10251/144561
dc.description.abstract [EN] The target of the paper is to study how to devise an efficient discrete-event model for the yearly energy simulation of buildings. Conventionally, software tools use time-driven schemes and many components must be computed at every sampling time-point. Event-driven simulation aims at lowering this burden, by calling only those components whose state is evolving quickly. The article explores a model based on DEVS formalism and Quantized State Systems (QSS) techniques. Within this paradigm shift, our strategy was to reuse as much widely accepted knowledge as possible. One immediate difficulty was, that the well-known conduction heat transfer function (CHTF) of multi-layered walls is not suitable for DEVS in its traditional form since it is constrained to sample at a fixed time step. Instead, the paper introduces a non-conventional method: the Successive State Transition method (SST). Its distinguishing traits are: it allows variable time steps, has high accuracy and its computational workload adapts to the elapsed time between transitions. Unfortunately, although we found that SST and QSS work well together, the paper shows that the aforementioned transfer function is not adequate for event-driven simulations. Based on the paper outcomes, we propose a workaround for further research: a new transfer function, relating the conduction heat flux (input) to the time derivative of the wall superficial temperature (output) (recall that the traditional input-output relationship: superficial temperature and conduction heat flux, respectively). es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Journal of Building Performance Simulation es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Successive state transition method es_ES
dc.subject Heat transfer es_ES
dc.subject Discrete event simulation es_ES
dc.subject DEVS es_ES
dc.subject Buildings es_ES
dc.subject Energy simulation es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Exploring the use of traditional heat transfer functions for energy simulation of buildings using discrete events and quantized-state-based integration es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/19401493.2020.1723704 es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Soto Francés, VM.; Sarabia-Escrivá, EJ.; Pinazo Ojer, JM.; Martínez, PJ. (2020). Exploring the use of traditional heat transfer functions for energy simulation of buildings using discrete events and quantized-state-based integration. Journal of Building Performance Simulation. 13(3):247-263. https://doi.org/10.1080/19401493.2020.1723704 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/19401493.2020.1723704 es_ES
dc.description.upvformatpinicio 247 es_ES
dc.description.upvformatpfin 263 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\404529 es_ES
dc.description.references Bergero, F. M., Casella, F., Kofman, E., & Fernández, J. (2017). On the efficiency of quantization-based integration methods for building simulation. Building Simulation, 11(2), 405-418. doi:10.1007/s12273-017-0400-1 es_ES
dc.description.references Bergero, F., & Kofman, E. (2010). PowerDEVS: a tool for hybrid system modeling and real-time simulation. SIMULATION, 87(1-2), 113-132. doi:10.1177/0037549710368029 es_ES
dc.description.references Chen, Y., & Wang, S. (2001). Frequency-domain regression method for estimating CTF models of building multilayer constructions. Applied Mathematical Modelling, 25(7), 579-592. doi:10.1016/s0307-904x(00)00067-6 es_ES
dc.description.references Fernández, J., & Kofman, E. (2014). A stand-alone quantized state system solver for continuous system simulation. SIMULATION, 90(7), 782-799. doi:10.1177/0037549714536255 es_ES
dc.description.references Fernandez, J., Kofman, E., & Bergero, F. (2017). A parallel Quantized State System Solver for ODEs. Journal of Parallel and Distributed Computing, 106, 14-30. doi:10.1016/j.jpdc.2017.02.011 es_ES
dc.description.references Soto Frances, V. M., Sarabia Escriva, E. J., & Pinazo Ojer, J. M. (2014). Discrete event heat transfer simulation of a room. International Journal of Thermal Sciences, 75, 105-115. doi:10.1016/j.ijthermalsci.2013.07.024 es_ES
dc.description.references Soto Frances, V. M., Sarabia Escriva, E. J., & Pinazo Ojer, J. M. (2015). Discrete event heat transfer simulation of a room using a Quantized State System of order two, QSS2 integrator. International Journal of Thermal Sciences, 97, 82-93. doi:10.1016/j.ijthermalsci.2015.06.006 es_ES
dc.description.references Frances, V. M. S., Escriva, E. J. S., & Ojer, J. M. P. (2016). A hygrothermal dynamic zone model for building energy simulation. Energy and Buildings, 133, 389-402. doi:10.1016/j.enbuild.2016.10.002 es_ES
dc.description.references Gunay, H. B., O’Brien, W., Beausoleil-Morrison, I., Goldstein, R., Breslav, S., & Khan, A. (2014). Coupling stochastic occupant models to building performance simulation using the discrete event system specification formalism. Journal of Building Performance Simulation, 7(6), 457-478. doi:10.1080/19401493.2013.866695 es_ES
dc.description.references Hittle, D. C., & Bishop, R. (1983). An improved root-finding procedure for use in calculating transient heat flow through multilayered slabs. International Journal of Heat and Mass Transfer, 26(11), 1685-1693. doi:10.1016/s0017-9310(83)80089-1 es_ES
dc.description.references Ko, Y.-S., & No, S. T. (2015). A Study on Comparison of Building Energy Simulation and Measurement Results for a City Hall. Journal of Building Construction and Planning Research, 03(01), 1-9. doi:10.4236/jbcpr.2015.31001 es_ES
dc.description.references Li, N., Yang, Z., Becerik-Gerber, B., Tang, C., & Chen, N. (2015). Why is the reliability of building simulation limited as a tool for evaluating energy conservation measures? Applied Energy, 159, 196-205. doi:10.1016/j.apenergy.2015.09.001 es_ES
dc.description.references Maestre, I. R., Cubillas, P. R., & Pérez-Lombard, L. (2010). Transient heat conduction in multi-layer walls: An efficient strategy for Laplace’s method. Energy and Buildings, 42(4), 541-546. doi:10.1016/j.enbuild.2009.10.023 es_ES
dc.description.references Pinazo Ojer, J. M., Soto Frances, V. M., Sarabia Escriva, E., & Soto Frances, L. (2015). Thermal response factors to a 2nd order shaping function for the calculation of the 1D heat conduction in a multi-layered slab. International Journal of Heat and Mass Transfer, 88, 579-590. doi:10.1016/j.ijheatmasstransfer.2015.04.110 es_ES
dc.description.references Pakanen, J. (1996). CONDUCTION OF HEAT THROUGH ONE- AND MULTILAYER SLABS: A DIFFERENTIAL-DIFFERENCE APPROACH. Numerical Heat Transfer, Part B: Fundamentals, 30(1), 67-91. doi:10.1080/10407799608915072 es_ES
dc.description.references Trčka, M., Hensen, J. L. M., & Wetter, M. (2009). Co-simulation of innovative integrated HVAC systems in buildings. Journal of Building Performance Simulation, 2(3), 209-230. doi:10.1080/19401490903051959 es_ES
dc.description.references Wainer, G., & Mosterman, P. (Eds.). (2010). Discrete-Event Modeling and Simulation. Computational Analysis, Synthesis, & Design Dynamic Systems. doi:10.1201/b10412 es_ES
dc.description.references Wang, H., & Zhai, Z. (John). (2016). Advances in building simulation and computational techniques: A review between 1987 and 2014. Energy and Buildings, 128, 319-335. doi:10.1016/j.enbuild.2016.06.080 es_ES
dc.description.references URANO, Y., & WATANABE, T. (1981). AN ANALYSIS OF MULTI-LAYER WALL HEAT TRANSFER BY STATE TRANSITION MATRIX : Part 1 An Approximate Transfer Functions Model and its Accuracy. Transactions of the Architectural Institute of Japan, 305(0), 97-111. doi:10.3130/aijsaxx.305.0_97 es_ES
dc.description.references URANO, Y., & WATANABE, T. (1982). AN ANALYSIS OF MULTI-LAYER WALL HEAT TRANSFER BY STATE TRANSITION MATRIX : Part 2 A Successive Calculation Method and its Accuracy. Transactions of the Architectural Institute of Japan, 311(0), 57-66. doi:10.3130/aijsaxx.311.0_57 es_ES
dc.subject.ods 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem