- -

A Smart-Distributed Pareto Front Using ev-MOGA Evolutionary Algorithm

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A Smart-Distributed Pareto Front Using ev-MOGA Evolutionary Algorithm

Mostrar el registro completo del ítem

Herrero Durá, JM.; Reynoso Meza, G.; Martínez Iranzo, MA.; Blasco Ferragud, FX.; Sanchís Saez, J. (2014). A Smart-Distributed Pareto Front Using ev-MOGA Evolutionary Algorithm. International Journal of Artificial Intelligence Tools. 23(2):1-22. https://doi.org/10.1142/S021821301450002X

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144562

Ficheros en el ítem

Metadatos del ítem

Título: A Smart-Distributed Pareto Front Using ev-MOGA Evolutionary Algorithm
Autor: Herrero Durá, Juan Manuel Reynoso Meza, Gilberto Martínez Iranzo, Miguel Andrés Blasco Ferragud, Francesc Xavier Sanchís Saez, Javier
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica
Fecha difusión:
Resumen:
[EN] Obtaining multi-objective optimization solutions with a small number of points smartly distributed along the Pareto front is a challenge. Optimization methods, such as the nor- malized normal constraint (NNC), propose ...[+]
Palabras clave: Multi-objective optimization , Pareto front , Engineering design , Evolutionary algorithms , Multi-objective evolutionary algorithms
Derechos de uso: Reserva de todos los derechos
Fuente:
International Journal of Artificial Intelligence Tools. (issn: 0218-2130 )
DOI: 10.1142/S021821301450002X
Editorial:
World Scientific
Versión del editor: https://doi.org/10.1142/S021821301450002X
Código del Proyecto:
info:eu-repo/grantAgreement/UPV//FPI%2F2010%2F19/
info:eu-repo/grantAgreement/UPV//PAID-06-11/
info:eu-repo/grantAgreement/MICINN//ENE2011-25900/ES/GESTION OPTIMA MEDIANTE CONTROLADORES AVANZADOS DE PILAS DE COMBUSTIBLE TIPO PEM PARA APLICACIONES MOVILES Y ESTATICAS/
info:eu-repo/grantAgreement/MICINN//TIN2011-28082/ES/DISEÑO E IMPLEMENTACION DE PILOTOS AUTOMATICOS PARA VEHICULOS AEREOS NO TRIPULADOS (UAVS) MEDIANTE TECNICAS DE OPTIMIZACION Y CONTROL AVANZADO/
info:eu-repo/grantAgreement/GVA//GV%2F2012%2F073/
Agradecimientos:
This work was partially supported by the FPI-2010/19 grant and the PAID-06-11 project from the Universitat Politècnica de València, projects TIN2011-28082 and ENE2011-25900 (Spanish Ministry of Economy and Competitiveness) ...[+]
Tipo: Artículo

References

Marler, R. T., & Arora, J. S. (2009). The weighted sum method for multi-objective optimization: new insights. Structural and Multidisciplinary Optimization, 41(6), 853-862. doi:10.1007/s00158-009-0460-7

Messac, A., & Mattson, C. A. (2002). Optimization and Engineering, 3(4), 431-450. doi:10.1023/a:1021179727569

Messac, A., Ismail-Yahaya, A., & Mattson, C. A. (2003). The normalized normal constraint method for generating the Pareto frontier. Structural and Multidisciplinary Optimization, 25(2), 86-98. doi:10.1007/s00158-002-0276-1 [+]
Marler, R. T., & Arora, J. S. (2009). The weighted sum method for multi-objective optimization: new insights. Structural and Multidisciplinary Optimization, 41(6), 853-862. doi:10.1007/s00158-009-0460-7

Messac, A., & Mattson, C. A. (2002). Optimization and Engineering, 3(4), 431-450. doi:10.1023/a:1021179727569

Messac, A., Ismail-Yahaya, A., & Mattson, C. A. (2003). The normalized normal constraint method for generating the Pareto frontier. Structural and Multidisciplinary Optimization, 25(2), 86-98. doi:10.1007/s00158-002-0276-1

Martínez, M., Sanchis, J., & Blasco, X. (2006). Global and well-distributed Pareto frontier by modified normalized normal constraint methods for bicriterion problems. Structural and Multidisciplinary Optimization, 34(3), 197-209. doi:10.1007/s00158-006-0071-5

Martínez, M., García-Nieto, S., Sanchis, J., & Blasco, X. (2009). Genetic algorithms optimization for normalized normal constraint method under Pareto construction. Advances in Engineering Software, 40(4), 260-267. doi:10.1016/j.advengsoft.2008.04.004

Mattson, C. A., & Messac, A. (2005). Pareto Frontier Based Concept Selection Under Uncertainty, with Visualization. Optimization and Engineering, 6(1), 85-115. doi:10.1023/b:opte.0000048538.35456.45

Mattson, C. A., Mullur, A. A., & Messac, A. (2004). Smart Pareto filter: obtaining a minimal representation of multiobjective design space. Engineering Optimization, 36(6), 721-740. doi:10.1080/0305215042000274942

Coello Coello, C. A. (2006). Evolutionary multi-objective optimization: a historical view of the field. IEEE Computational Intelligence Magazine, 1(1), 28-36. doi:10.1109/mci.2006.1597059

Zhou, A., Qu, B.-Y., Li, H., Zhao, S.-Z., Suganthan, P. N., & Zhang, Q. (2011). Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary Computation, 1(1), 32-49. doi:10.1016/j.swevo.2011.03.001

Bonissone, P., Subbu, R., & Lizzi, J. (2009). Multicriteria decision making (mcdm): a framework for research and applications. IEEE Computational Intelligence Magazine, 4(3), 48-61. doi:10.1109/mci.2009.933093

Laumanns, M., Thiele, L., Deb, K., & Zitzler, E. (2002). Combining Convergence and Diversity in Evolutionary Multiobjective Optimization. Evolutionary Computation, 10(3), 263-282. doi:10.1162/106365602760234108

Coello Coello, C. A. (2002). Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Computer Methods in Applied Mechanics and Engineering, 191(11-12), 1245-1287. doi:10.1016/s0045-7825(01)00323-1

Mezura-Montes, E., & Coello Coello, C. A. (2011). Constraint-handling in nature-inspired numerical optimization: Past, present and future. Swarm and Evolutionary Computation, 1(4), 173-194. doi:10.1016/j.swevo.2011.10.001

ÅSTRÖM, K. J., PANAGOPOULOS, H., & HÄGGLUND, T. (1998). Design of PI Controllers based on Non-Convex Optimization. Automatica, 34(5), 585-601. doi:10.1016/s0005-1098(98)00011-9

Reynoso-Meza, G., Sanchis, J., Blasco, X., & Herrero, J. M. (2012). Multiobjective evolutionary algorithms for multivariable PI controller design. Expert Systems with Applications, 39(9), 7895-7907. doi:10.1016/j.eswa.2012.01.111

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem