dc.contributor.author |
Herrero Durá, Juan Manuel
|
es_ES |
dc.contributor.author |
Reynoso Meza, Gilberto
|
es_ES |
dc.contributor.author |
Martínez Iranzo, Miguel Andrés
|
es_ES |
dc.contributor.author |
Blasco Ferragud, Francesc Xavier
|
es_ES |
dc.contributor.author |
Sanchís Saez, Javier
|
es_ES |
dc.date.accessioned |
2020-05-29T03:32:28Z |
|
dc.date.available |
2020-05-29T03:32:28Z |
|
dc.date.issued |
2014-04 |
es_ES |
dc.identifier.issn |
0218-2130 |
es_ES |
dc.identifier.uri |
http://hdl.handle.net/10251/144562 |
|
dc.description.abstract |
[EN] Obtaining multi-objective optimization solutions with a small number of points smartly
distributed along the Pareto front is a challenge. Optimization methods, such as the nor-
malized normal constraint (NNC), propose the use of a filter to achieve a smart Pareto
front distribution. The NCC optimization method presents several disadvantages related
with the procedure itself, initial condition dependency, and computational burden. In
this article, the epsilon-variable multi-objective genetic algorithm (ev-MOGA) is pre-
sented. This algorithm characterizes the Pareto front in a smart way and removes the
disadvantages of the NNC method. Finally, examples of a three-bar truss design and
controller tuning optimizations are presented for comparison purposes. |
es_ES |
dc.description.sponsorship |
This work was partially supported by the FPI-2010/19 grant and the PAID-06-11 project from the Universitat Politècnica de València, projects TIN2011-28082 and ENE2011-25900 (Spanish Ministry of Economy and Competitiveness) and the GV/2012/073 (Generalitat Valenciana). |
es_ES |
dc.language |
Inglés |
es_ES |
dc.publisher |
World Scientific |
es_ES |
dc.relation.ispartof |
International Journal of Artificial Intelligence Tools |
es_ES |
dc.rights |
Reserva de todos los derechos |
es_ES |
dc.subject |
Multi-objective optimization |
es_ES |
dc.subject |
Pareto front |
es_ES |
dc.subject |
Engineering design |
es_ES |
dc.subject |
Evolutionary algorithms |
es_ES |
dc.subject |
Multi-objective evolutionary algorithms |
es_ES |
dc.subject.classification |
INGENIERIA DE SISTEMAS Y AUTOMATICA |
es_ES |
dc.title |
A Smart-Distributed Pareto Front Using ev-MOGA Evolutionary Algorithm |
es_ES |
dc.type |
Artículo |
es_ES |
dc.identifier.doi |
10.1142/S021821301450002X |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/UPV//FPI%2F2010%2F19/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/UPV//PAID-06-11/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MICINN//ENE2011-25900/ES/GESTION OPTIMA MEDIANTE CONTROLADORES AVANZADOS DE PILAS DE COMBUSTIBLE TIPO PEM PARA APLICACIONES MOVILES Y ESTATICAS/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/MICINN//TIN2011-28082/ES/DISEÑO E IMPLEMENTACION DE PILOTOS AUTOMATICOS PARA VEHICULOS AEREOS NO TRIPULADOS (UAVS) MEDIANTE TECNICAS DE OPTIMIZACION Y CONTROL AVANZADO/ |
es_ES |
dc.relation.projectID |
info:eu-repo/grantAgreement/GVA//GV%2F2012%2F073/ |
es_ES |
dc.rights.accessRights |
Abierto |
es_ES |
dc.contributor.affiliation |
Universitat Politècnica de València. Departamento de Ingeniería de Sistemas y Automática - Departament d'Enginyeria de Sistemes i Automàtica |
es_ES |
dc.description.bibliographicCitation |
Herrero Durá, JM.; Reynoso Meza, G.; Martínez Iranzo, MA.; Blasco Ferragud, FX.; Sanchís Saez, J. (2014). A Smart-Distributed Pareto Front Using ev-MOGA Evolutionary Algorithm. International Journal of Artificial Intelligence Tools. 23(2):1-22. https://doi.org/10.1142/S021821301450002X |
es_ES |
dc.description.accrualMethod |
S |
es_ES |
dc.relation.publisherversion |
https://doi.org/10.1142/S021821301450002X |
es_ES |
dc.description.upvformatpinicio |
1 |
es_ES |
dc.description.upvformatpfin |
22 |
es_ES |
dc.type.version |
info:eu-repo/semantics/publishedVersion |
es_ES |
dc.description.volume |
23 |
es_ES |
dc.description.issue |
2 |
es_ES |
dc.relation.pasarela |
S\267291 |
es_ES |
dc.contributor.funder |
Generalitat Valenciana |
es_ES |
dc.contributor.funder |
Universitat Politècnica de València |
es_ES |
dc.contributor.funder |
Ministerio de Ciencia e Innovación |
es_ES |
dc.description.references |
Marler, R. T., & Arora, J. S. (2009). The weighted sum method for multi-objective optimization: new insights. Structural and Multidisciplinary Optimization, 41(6), 853-862. doi:10.1007/s00158-009-0460-7 |
es_ES |
dc.description.references |
Messac, A., & Mattson, C. A. (2002). Optimization and Engineering, 3(4), 431-450. doi:10.1023/a:1021179727569 |
es_ES |
dc.description.references |
Messac, A., Ismail-Yahaya, A., & Mattson, C. A. (2003). The normalized normal constraint method for generating the Pareto frontier. Structural and Multidisciplinary Optimization, 25(2), 86-98. doi:10.1007/s00158-002-0276-1 |
es_ES |
dc.description.references |
Martínez, M., Sanchis, J., & Blasco, X. (2006). Global and well-distributed Pareto frontier by modified normalized normal constraint methods for bicriterion problems. Structural and Multidisciplinary Optimization, 34(3), 197-209. doi:10.1007/s00158-006-0071-5 |
es_ES |
dc.description.references |
Martínez, M., García-Nieto, S., Sanchis, J., & Blasco, X. (2009). Genetic algorithms optimization for normalized normal constraint method under Pareto construction. Advances in Engineering Software, 40(4), 260-267. doi:10.1016/j.advengsoft.2008.04.004 |
es_ES |
dc.description.references |
Mattson, C. A., & Messac, A. (2005). Pareto Frontier Based Concept Selection Under Uncertainty, with Visualization. Optimization and Engineering, 6(1), 85-115. doi:10.1023/b:opte.0000048538.35456.45 |
es_ES |
dc.description.references |
Mattson, C. A., Mullur, A. A., & Messac, A. (2004). Smart Pareto filter: obtaining a minimal representation of multiobjective design space. Engineering Optimization, 36(6), 721-740. doi:10.1080/0305215042000274942 |
es_ES |
dc.description.references |
Coello Coello, C. A. (2006). Evolutionary multi-objective optimization: a historical view of the field. IEEE Computational Intelligence Magazine, 1(1), 28-36. doi:10.1109/mci.2006.1597059 |
es_ES |
dc.description.references |
Zhou, A., Qu, B.-Y., Li, H., Zhao, S.-Z., Suganthan, P. N., & Zhang, Q. (2011). Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm and Evolutionary Computation, 1(1), 32-49. doi:10.1016/j.swevo.2011.03.001 |
es_ES |
dc.description.references |
Bonissone, P., Subbu, R., & Lizzi, J. (2009). Multicriteria decision making (mcdm): a framework for research and applications. IEEE Computational Intelligence Magazine, 4(3), 48-61. doi:10.1109/mci.2009.933093 |
es_ES |
dc.description.references |
Laumanns, M., Thiele, L., Deb, K., & Zitzler, E. (2002). Combining Convergence and Diversity in Evolutionary Multiobjective Optimization. Evolutionary Computation, 10(3), 263-282. doi:10.1162/106365602760234108 |
es_ES |
dc.description.references |
Coello Coello, C. A. (2002). Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Computer Methods in Applied Mechanics and Engineering, 191(11-12), 1245-1287. doi:10.1016/s0045-7825(01)00323-1 |
es_ES |
dc.description.references |
Mezura-Montes, E., & Coello Coello, C. A. (2011). Constraint-handling in nature-inspired numerical optimization: Past, present and future. Swarm and Evolutionary Computation, 1(4), 173-194. doi:10.1016/j.swevo.2011.10.001 |
es_ES |
dc.description.references |
ÅSTRÖM, K. J., PANAGOPOULOS, H., & HÄGGLUND, T. (1998). Design of PI Controllers based on Non-Convex Optimization. Automatica, 34(5), 585-601. doi:10.1016/s0005-1098(98)00011-9 |
es_ES |
dc.description.references |
Reynoso-Meza, G., Sanchis, J., Blasco, X., & Herrero, J. M. (2012). Multiobjective evolutionary algorithms for multivariable PI controller design. Expert Systems with Applications, 39(9), 7895-7907. doi:10.1016/j.eswa.2012.01.111 |
es_ES |