Himesh, S. (2018). Digital revolution and Big Data: a new revolution in agriculture. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 13(021). doi:10.1079/pavsnnr201813021
Digital Agriculture: Improving Profitabilityhttps://www.accenture.com/_acnmedia/accenture/conversion-assets/dotcom/documents/global/pdf/digital_3/accenture-digital-agriculture-point-of-view.pdf
Digital Farming: What Does It Really Mean?http://www.cema-agri.org/publication/digital-farming-what-does-it-really-mean
[+]
Himesh, S. (2018). Digital revolution and Big Data: a new revolution in agriculture. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 13(021). doi:10.1079/pavsnnr201813021
Digital Agriculture: Improving Profitabilityhttps://www.accenture.com/_acnmedia/accenture/conversion-assets/dotcom/documents/global/pdf/digital_3/accenture-digital-agriculture-point-of-view.pdf
Digital Farming: What Does It Really Mean?http://www.cema-agri.org/publication/digital-farming-what-does-it-really-mean
Agriculture Needs to Attract More Young Peoplehttp://www.gainhealth.org/knowledge-centre/worlds-farmers-age-new-blood-needed
Generational Renewalhttps://enrd.ec.europa.eu/enrd-thematic-work/generational-renewal_en
What is IoT in Agriculture? Farmers Aren’t Quite Sure Despite $4bn US Opportunity—Reporthttps://agfundernews.com/iot-agriculture-farmers-arent-quite-sure-despite-4bn-us-opportunity.html
Precision Agriculture Yields Higher Profits, Lower Riskshttps://www.hpe.com/us/en/insights/articles/precision-agriculture-yields-higher-profits-lower-risks-1806.html
Tzounis, A., Katsoulas, N., Bartzanas, T., & Kittas, C. (2017). Internet of Things in agriculture, recent advances and future challenges. Biosystems Engineering, 164, 31-48. doi:10.1016/j.biosystemseng.2017.09.007
From Dirt to Data: The Second Green Revolution and IoT. Deloitte insightshttps://www2.deloitte.com/insights/us/en/deloitte-review/issue-18/second-green-revolution-and-internet-of-things.html#endnote-sup-9
Big Data: The Next Frontier for Innovation, Competition, and Productivity | McKinseyhttps://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/big-data-the-next-frontier-for-innovation
Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M.-J. (2017). Big Data in Smart Farming – A review. Agricultural Systems, 153, 69-80. doi:10.1016/j.agsy.2017.01.023
Kamilaris, A., Kartakoullis, A., & Prenafeta-Boldú, F. X. (2017). A review on the practice of big data analysis in agriculture. Computers and Electronics in Agriculture, 143, 23-37. doi:10.1016/j.compag.2017.09.037
How Big Data Will Change Agriculturehttps://proagrica.com/news/how-big-data-will-change-agriculture/
Big Data Coordination Platform. Proposal to the CGIAR Fund Councilhttps://cgspace.cgiar.org/handle/10947/4303
Zambon, I., Cecchini, M., Egidi, G., Saporito, M. G., & Colantoni, A. (2019). Revolution 4.0: Industry vs. Agriculture in a Future Development for SMEs. Processes, 7(1), 36. doi:10.3390/pr7010036
How AI Is Transforming Agriculturehttps://www.forbes.com/sites/cognitiveworld/2019/07/05/how-ai-is-transforming-agriculture/
Bechar, A., & Vigneault, C. (2016). Agricultural robots for field operations: Concepts and components. Biosystems Engineering, 149, 94-111. doi:10.1016/j.biosystemseng.2016.06.014
Bechar, A., & Vigneault, C. (2017). Agricultural robots for field operations. Part 2: Operations and systems. Biosystems Engineering, 153, 110-128. doi:10.1016/j.biosystemseng.2016.11.004
Ramin Shamshiri, R., Weltzien, C., A. Hameed, I., J. Yule, I., … E. Grift, T. (2018). Research and development in agricultural robotics: A perspective of digital farming. International Journal of Agricultural and Biological Engineering, 11(4), 1-11. doi:10.25165/j.ijabe.20181104.4278
Farming 4.0: The Future of Agriculture?https://www.euractiv.com/section/agriculture-food/infographic/farming-4-0-the-future-of-agriculture/
Ag Tech Deal Activity More Than Tripleshttps://www.cbinsights.com/research/agriculture-farm-tech-startup-funding-trends/
AI, Robotics, And the Future of Precision Agriculturehttps://www.cbinsights.com/research/ai-robotics-agriculture-tech-startups-future/
VineScout European Projectwww.vinescout.eu
Precision Farming: A New Approach to Crop Managementhttp://agpublications.tamu.edu/pubs/eng/l5177.pdf
Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculture—a worldwide overview. Computers and Electronics in Agriculture, 36(2-3), 113-132. doi:10.1016/s0168-1699(02)00096-0
MIAO, Y., MULLA, D. J., & ROBERT, P. C. (2018). An integrated approach to site-specific management zone delineation. Frontiers of Agricultural Science and Engineering, 0(0), 0. doi:10.15302/j-fase-2018230
Klassen, S. P., Villa, J., Adamchuk, V., & Serraj, R. (2014). Soil mapping for improved phenotyping of drought resistance in lowland rice fields. Field Crops Research, 167, 112-118. doi:10.1016/j.fcr.2014.07.007
Khanal, S., Fulton, J., & Shearer, S. (2017). An overview of current and potential applications of thermal remote sensing in precision agriculture. Computers and Electronics in Agriculture, 139, 22-32. doi:10.1016/j.compag.2017.05.001
Aravind, K. R., Raja, P., & Pérez-Ruiz, M. (2017). Task-based agricultural mobile robots in arable farming: A review. Spanish Journal of Agricultural Research, 15(1), e02R01. doi:10.5424/sjar/2017151-9573
Roldán, J. J., Cerro, J. del, Garzón‐Ramos, D., Garcia‐Aunon, P., Garzón, M., León, J. de, & Barrientos, A. (2018). Robots in Agriculture: State of Art and Practical Experiences. Service Robots. doi:10.5772/intechopen.69874
Gonzalez-de-Santos, P., Ribeiro, A., Fernandez-Quintanilla, C., Lopez-Granados, F., Brandstoetter, M., Tomic, S., … Debilde, B. (2016). Fleets of robots for environmentally-safe pest control in agriculture. Precision Agriculture, 18(4), 574-614. doi:10.1007/s11119-016-9476-3
What’s Slowing the Use of Robots in the Ag Industry?https://www.therobotreport.com/whats-slowing-the-use-of-robots-in-the-ag-industry/
Bogue, R. (2016). Robots poised to revolutionise agriculture. Industrial Robot: An International Journal, 43(5), 450-456. doi:10.1108/ir-05-2016-0142
Features & Benefits OZ Weeding Robothttps://www.naio-technologies.com/en/agricultural-equipment/weeding-robot-oz/
Robotics for Sustainable Broad-Acre Agriculturehttps://www.researchgate.net/publication/283722961_Robotics_for_Sustainable_Broad-Acre_Agriculture
The Ultimate Guide to Agricultural Roboticshttps://www.roboticsbusinessreview.com/agriculture/the_ultimate_guide_to_agricultural_robotics/
Kweon, G., Lund, E., & Maxton, C. (2013). Soil organic matter and cation-exchange capacity sensing with on-the-go electrical conductivity and optical sensors. Geoderma, 199, 80-89. doi:10.1016/j.geoderma.2012.11.001
Agricultural Robots—Present and Future Applications (Videos Included)https://emerj.com/ai-sector-overviews/agricultural-robots-present-future-applications/
Köksal, Ö., & Tekinerdogan, B. (2018). Architecture design approach for IoT-based farm management information systems. Precision Agriculture, 20(5), 926-958. doi:10.1007/s11119-018-09624-8
Rovira-Más, F., & Sáiz-Rubio, V. (2013). Crop Biometric Maps: The Key to Prediction. Sensors, 13(9), 12698-12743. doi:10.3390/s130912698
Oliver, M. A., & Webster, R. (2014). A tutorial guide to geostatistics: Computing and modelling variograms and kriging. CATENA, 113, 56-69. doi:10.1016/j.catena.2013.09.006
Adamchuk, V. ., Hummel, J. ., Morgan, M. ., & Upadhyaya, S. . (2004). On-the-go soil sensors for precision agriculture. Computers and Electronics in Agriculture, 44(1), 71-91. doi:10.1016/j.compag.2004.03.002
Cossell, S., Whitty, M., Liu, S., & Tang, J. (2016). Spatial Map Generation from Low Cost Ground Vehicle Mounted Monocular Camera. IFAC-PapersOnLine, 49(16), 231-236. doi:10.1016/j.ifacol.2016.10.043
N. Zhang, & R. K. Taylor. (2001). APPLICATIONS OF A FIELD LEVEL GEOGRAPHIC INFORMATION SYSTEM (FIS) IN PRECISION AGRICULTURE. Applied Engineering in Agriculture, 17(6). doi:10.13031/2013.6829
Runquist, S., Zhang, N., & Taylor, R. K. (2001). Development of a field-level geographic information system. Computers and Electronics in Agriculture, 31(2), 201-209. doi:10.1016/s0168-1699(00)00155-1
Granular Farm Management Software, Precision Agriculture, Agricultural Softwarehttps://granular.ag/
Capterra. Farm Management Softwarewww.capterra.com
Top 9 Farm Management Software—Compare Reviews, Features, Pricing in 2019https://www.predictiveanalyticstoday.com/top-farm-management-software/
Srivastava, P. K., & Singh, R. M. (2016). GIS based integrated modelling framework for agricultural canal system simulation and management in Indo-Gangetic plains of India. Agricultural Water Management, 163, 37-47. doi:10.1016/j.agwat.2015.08.025
Giusti, E., & Marsili-Libelli, S. (2015). A Fuzzy Decision Support System for irrigation and water conservation in agriculture. Environmental Modelling & Software, 63, 73-86. doi:10.1016/j.envsoft.2014.09.020
Asfaw, D., Black, E., Brown, M., Nicklin, K. J., Otu-Larbi, F., Pinnington, E., … Quaife, T. (2018). TAMSAT-ALERT v1: a new framework for agricultural decision support. Geoscientific Model Development, 11(6), 2353-2371. doi:10.5194/gmd-11-2353-2018
https://dssat.net
Navarro-Hellín, H., Martínez-del-Rincon, J., Domingo-Miguel, R., Soto-Valles, F., & Torres-Sánchez, R. (2016). A decision support system for managing irrigation in agriculture. Computers and Electronics in Agriculture, 124, 121-131. doi:10.1016/j.compag.2016.04.003
Kumar, A., Sah, B., Singh, A. R., Deng, Y., He, X., Kumar, P., & Bansal, R. C. (2017). A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renewable and Sustainable Energy Reviews, 69, 596-609. doi:10.1016/j.rser.2016.11.191
Rupnik, R., Kukar, M., Vračar, P., Košir, D., Pevec, D., & Bosnić, Z. (2019). AgroDSS: A decision support system for agriculture and farming. Computers and Electronics in Agriculture, 161, 260-271. doi:10.1016/j.compag.2018.04.001
Rose, D. C., Sutherland, W. J., Parker, C., Lobley, M., Winter, M., Morris, C., … Dicks, L. V. (2016). Decision support tools for agriculture: Towards effective design and delivery. Agricultural Systems, 149, 165-174. doi:10.1016/j.agsy.2016.09.009
Colaço, A. F., & Molin, J. P. (2016). Variable rate fertilization in citrus: a long term study. Precision Agriculture, 18(2), 169-191. doi:10.1007/s11119-016-9454-9
Nawar, S., Corstanje, R., Halcro, G., Mulla, D., & Mouazen, A. M. (2017). Delineation of Soil Management Zones for Variable-Rate Fertilization. Advances in Agronomy, 175-245. doi:10.1016/bs.agron.2017.01.003
Fountas, S., Carli, G., Sørensen, C. G., Tsiropoulos, Z., Cavalaris, C., Vatsanidou, A., … Tisserye, B. (2015). Farm management information systems: Current situation and future perspectives. Computers and Electronics in Agriculture, 115, 40-50. doi:10.1016/j.compag.2015.05.011
Precision Agriculture in Europe: Legal, Social and Ethical Considerations—Think Tankhttp://www.europarl.europa.eu/thinktank/en/document.html?reference=EPRS_STU(2017)603207
[-]