- -

From Smart Farming towards Agriculture 5.0: A Review on Crop Data Management

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

From Smart Farming towards Agriculture 5.0: A Review on Crop Data Management

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sáiz Rubio, Verónica es_ES
dc.contributor.author Rovira Más, Francisco es_ES
dc.date.accessioned 2020-05-29T03:32:50Z
dc.date.available 2020-05-29T03:32:50Z
dc.date.issued 2020-02-03 es_ES
dc.identifier.uri http://hdl.handle.net/10251/144568
dc.description.abstract [EN] The information that crops offer is turned into profitable decisions only when efficiently managed. Current advances in data management are making Smart Farming grow exponentially as data have become the key element in modern agriculture to help producers with critical decision-making. Valuable advantages appear with objective information acquired through sensors with the aim of maximizing productivity and sustainability. This kind of data-based managed farms rely on data that can increase efficiency by avoiding the misuse of resources and the pollution of the environment. Data-driven agriculture, with the help of robotic solutions incorporating artificial intelligent techniques, sets the grounds for the sustainable agriculture of the future. This paper reviews the current status of advanced farm management systems by revisiting each crucial step, from data acquisition in crop fields to variable rate applications, so that growers can make optimized decisions to save money while protecting the environment and transforming how food will be produced to sustainably match the forthcoming population growth. es_ES
dc.description.sponsorship This research article is part of a project that has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 737669. es_ES
dc.language Inglés es_ES
dc.publisher MDPI es_ES
dc.relation.ispartof Agronomy es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Agriculture 4.0 es_ES
dc.subject Big data es_ES
dc.subject Farm management information system (FMIS) es_ES
dc.subject Robotics es_ES
dc.subject IoT es_ES
dc.subject Variable-rate technology (VRT) es_ES
dc.subject AI es_ES
dc.subject.classification INGENIERIA AGROFORESTAL es_ES
dc.title From Smart Farming towards Agriculture 5.0: A Review on Crop Data Management es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/agronomy10020207 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/737669/EU/Intelligent decision from vineyard robots/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Rural y Agroalimentaria - Departament d'Enginyeria Rural i Agroalimentària es_ES
dc.description.bibliographicCitation Sáiz Rubio, V.; Rovira Más, F. (2020). From Smart Farming towards Agriculture 5.0: A Review on Crop Data Management. Agronomy. 10(2):1-21. https://doi.org/10.3390/agronomy10020207 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/agronomy10020207 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 21 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 2 es_ES
dc.identifier.eissn 2073-4395 es_ES
dc.relation.pasarela S\401996 es_ES
dc.description.references Himesh, S. (2018). Digital revolution and Big Data: a new revolution in agriculture. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 13(021). doi:10.1079/pavsnnr201813021 es_ES
dc.description.references Digital Agriculture: Improving Profitabilityhttps://www.accenture.com/_acnmedia/accenture/conversion-assets/dotcom/documents/global/pdf/digital_3/accenture-digital-agriculture-point-of-view.pdf es_ES
dc.description.references Digital Farming: What Does It Really Mean?http://www.cema-agri.org/publication/digital-farming-what-does-it-really-mean es_ES
dc.description.references Agriculture Needs to Attract More Young Peoplehttp://www.gainhealth.org/knowledge-centre/worlds-farmers-age-new-blood-needed es_ES
dc.description.references Generational Renewalhttps://enrd.ec.europa.eu/enrd-thematic-work/generational-renewal_en es_ES
dc.description.references What is IoT in Agriculture? Farmers Aren’t Quite Sure Despite $4bn US Opportunity—Reporthttps://agfundernews.com/iot-agriculture-farmers-arent-quite-sure-despite-4bn-us-opportunity.html es_ES
dc.description.references Precision Agriculture Yields Higher Profits, Lower Riskshttps://www.hpe.com/us/en/insights/articles/precision-agriculture-yields-higher-profits-lower-risks-1806.html es_ES
dc.description.references Tzounis, A., Katsoulas, N., Bartzanas, T., & Kittas, C. (2017). Internet of Things in agriculture, recent advances and future challenges. Biosystems Engineering, 164, 31-48. doi:10.1016/j.biosystemseng.2017.09.007 es_ES
dc.description.references From Dirt to Data: The Second Green Revolution and IoT. Deloitte insightshttps://www2.deloitte.com/insights/us/en/deloitte-review/issue-18/second-green-revolution-and-internet-of-things.html#endnote-sup-9 es_ES
dc.description.references Big Data: The Next Frontier for Innovation, Competition, and Productivity | McKinseyhttps://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/big-data-the-next-frontier-for-innovation es_ES
dc.description.references Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M.-J. (2017). Big Data in Smart Farming – A review. Agricultural Systems, 153, 69-80. doi:10.1016/j.agsy.2017.01.023 es_ES
dc.description.references Kamilaris, A., Kartakoullis, A., & Prenafeta-Boldú, F. X. (2017). A review on the practice of big data analysis in agriculture. Computers and Electronics in Agriculture, 143, 23-37. doi:10.1016/j.compag.2017.09.037 es_ES
dc.description.references How Big Data Will Change Agriculturehttps://proagrica.com/news/how-big-data-will-change-agriculture/ es_ES
dc.description.references Big Data Coordination Platform. Proposal to the CGIAR Fund Councilhttps://cgspace.cgiar.org/handle/10947/4303 es_ES
dc.description.references Zambon, I., Cecchini, M., Egidi, G., Saporito, M. G., & Colantoni, A. (2019). Revolution 4.0: Industry vs. Agriculture in a Future Development for SMEs. Processes, 7(1), 36. doi:10.3390/pr7010036 es_ES
dc.description.references How AI Is Transforming Agriculturehttps://www.forbes.com/sites/cognitiveworld/2019/07/05/how-ai-is-transforming-agriculture/ es_ES
dc.description.references Bechar, A., & Vigneault, C. (2016). Agricultural robots for field operations: Concepts and components. Biosystems Engineering, 149, 94-111. doi:10.1016/j.biosystemseng.2016.06.014 es_ES
dc.description.references Bechar, A., & Vigneault, C. (2017). Agricultural robots for field operations. Part 2: Operations and systems. Biosystems Engineering, 153, 110-128. doi:10.1016/j.biosystemseng.2016.11.004 es_ES
dc.description.references Ramin Shamshiri, R., Weltzien, C., A. Hameed, I., J. Yule, I., … E. Grift, T. (2018). Research and development in agricultural robotics: A perspective of digital farming. International Journal of Agricultural and Biological Engineering, 11(4), 1-11. doi:10.25165/j.ijabe.20181104.4278 es_ES
dc.description.references Farming 4.0: The Future of Agriculture?https://www.euractiv.com/section/agriculture-food/infographic/farming-4-0-the-future-of-agriculture/ es_ES
dc.description.references Ag Tech Deal Activity More Than Tripleshttps://www.cbinsights.com/research/agriculture-farm-tech-startup-funding-trends/ es_ES
dc.description.references AI, Robotics, And the Future of Precision Agriculturehttps://www.cbinsights.com/research/ai-robotics-agriculture-tech-startups-future/ es_ES
dc.description.references VineScout European Projectwww.vinescout.eu es_ES
dc.description.references Precision Farming: A New Approach to Crop Managementhttp://agpublications.tamu.edu/pubs/eng/l5177.pdf es_ES
dc.description.references Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculture—a worldwide overview. Computers and Electronics in Agriculture, 36(2-3), 113-132. doi:10.1016/s0168-1699(02)00096-0 es_ES
dc.description.references MIAO, Y., MULLA, D. J., & ROBERT, P. C. (2018). An integrated approach to site-specific management zone delineation. Frontiers of Agricultural Science and Engineering, 0(0), 0. doi:10.15302/j-fase-2018230 es_ES
dc.description.references Klassen, S. P., Villa, J., Adamchuk, V., & Serraj, R. (2014). Soil mapping for improved phenotyping of drought resistance in lowland rice fields. Field Crops Research, 167, 112-118. doi:10.1016/j.fcr.2014.07.007 es_ES
dc.description.references Khanal, S., Fulton, J., & Shearer, S. (2017). An overview of current and potential applications of thermal remote sensing in precision agriculture. Computers and Electronics in Agriculture, 139, 22-32. doi:10.1016/j.compag.2017.05.001 es_ES
dc.description.references Aravind, K. R., Raja, P., & Pérez-Ruiz, M. (2017). Task-based agricultural mobile robots in arable farming: A review. Spanish Journal of Agricultural Research, 15(1), e02R01. doi:10.5424/sjar/2017151-9573 es_ES
dc.description.references Roldán, J. J., Cerro, J. del, Garzón‐Ramos, D., Garcia‐Aunon, P., Garzón, M., León, J. de, & Barrientos, A. (2018). Robots in Agriculture: State of Art and Practical Experiences. Service Robots. doi:10.5772/intechopen.69874 es_ES
dc.description.references Gonzalez-de-Santos, P., Ribeiro, A., Fernandez-Quintanilla, C., Lopez-Granados, F., Brandstoetter, M., Tomic, S., … Debilde, B. (2016). Fleets of robots for environmentally-safe pest control in agriculture. Precision Agriculture, 18(4), 574-614. doi:10.1007/s11119-016-9476-3 es_ES
dc.description.references What’s Slowing the Use of Robots in the Ag Industry?https://www.therobotreport.com/whats-slowing-the-use-of-robots-in-the-ag-industry/ es_ES
dc.description.references Bogue, R. (2016). Robots poised to revolutionise agriculture. Industrial Robot: An International Journal, 43(5), 450-456. doi:10.1108/ir-05-2016-0142 es_ES
dc.description.references Features & Benefits OZ Weeding Robothttps://www.naio-technologies.com/en/agricultural-equipment/weeding-robot-oz/ es_ES
dc.description.references Robotics for Sustainable Broad-Acre Agriculturehttps://www.researchgate.net/publication/283722961_Robotics_for_Sustainable_Broad-Acre_Agriculture es_ES
dc.description.references The Ultimate Guide to Agricultural Roboticshttps://www.roboticsbusinessreview.com/agriculture/the_ultimate_guide_to_agricultural_robotics/ es_ES
dc.description.references Kweon, G., Lund, E., & Maxton, C. (2013). Soil organic matter and cation-exchange capacity sensing with on-the-go electrical conductivity and optical sensors. Geoderma, 199, 80-89. doi:10.1016/j.geoderma.2012.11.001 es_ES
dc.description.references Agricultural Robots—Present and Future Applications (Videos Included)https://emerj.com/ai-sector-overviews/agricultural-robots-present-future-applications/ es_ES
dc.description.references Köksal, Ö., & Tekinerdogan, B. (2018). Architecture design approach for IoT-based farm management information systems. Precision Agriculture, 20(5), 926-958. doi:10.1007/s11119-018-09624-8 es_ES
dc.description.references Rovira-Más, F., & Sáiz-Rubio, V. (2013). Crop Biometric Maps: The Key to Prediction. Sensors, 13(9), 12698-12743. doi:10.3390/s130912698 es_ES
dc.description.references Oliver, M. A., & Webster, R. (2014). A tutorial guide to geostatistics: Computing and modelling variograms and kriging. CATENA, 113, 56-69. doi:10.1016/j.catena.2013.09.006 es_ES
dc.description.references Adamchuk, V. ., Hummel, J. ., Morgan, M. ., & Upadhyaya, S. . (2004). On-the-go soil sensors for precision agriculture. Computers and Electronics in Agriculture, 44(1), 71-91. doi:10.1016/j.compag.2004.03.002 es_ES
dc.description.references Cossell, S., Whitty, M., Liu, S., & Tang, J. (2016). Spatial Map Generation from Low Cost Ground Vehicle Mounted Monocular Camera. IFAC-PapersOnLine, 49(16), 231-236. doi:10.1016/j.ifacol.2016.10.043 es_ES
dc.description.references N. Zhang, & R. K. Taylor. (2001). APPLICATIONS OF A FIELD LEVEL GEOGRAPHIC INFORMATION SYSTEM (FIS) IN PRECISION AGRICULTURE. Applied Engineering in Agriculture, 17(6). doi:10.13031/2013.6829 es_ES
dc.description.references Runquist, S., Zhang, N., & Taylor, R. K. (2001). Development of a field-level geographic information system. Computers and Electronics in Agriculture, 31(2), 201-209. doi:10.1016/s0168-1699(00)00155-1 es_ES
dc.description.references Granular Farm Management Software, Precision Agriculture, Agricultural Softwarehttps://granular.ag/ es_ES
dc.description.references Capterra. Farm Management Softwarewww.capterra.com es_ES
dc.description.references Top 9 Farm Management Software—Compare Reviews, Features, Pricing in 2019https://www.predictiveanalyticstoday.com/top-farm-management-software/ es_ES
dc.description.references Srivastava, P. K., & Singh, R. M. (2016). GIS based integrated modelling framework for agricultural canal system simulation and management in Indo-Gangetic plains of India. Agricultural Water Management, 163, 37-47. doi:10.1016/j.agwat.2015.08.025 es_ES
dc.description.references Giusti, E., & Marsili-Libelli, S. (2015). A Fuzzy Decision Support System for irrigation and water conservation in agriculture. Environmental Modelling & Software, 63, 73-86. doi:10.1016/j.envsoft.2014.09.020 es_ES
dc.description.references Asfaw, D., Black, E., Brown, M., Nicklin, K. J., Otu-Larbi, F., Pinnington, E., … Quaife, T. (2018). TAMSAT-ALERT v1: a new framework for agricultural decision support. Geoscientific Model Development, 11(6), 2353-2371. doi:10.5194/gmd-11-2353-2018 es_ES
dc.description.references https://dssat.net es_ES
dc.description.references Navarro-Hellín, H., Martínez-del-Rincon, J., Domingo-Miguel, R., Soto-Valles, F., & Torres-Sánchez, R. (2016). A decision support system for managing irrigation in agriculture. Computers and Electronics in Agriculture, 124, 121-131. doi:10.1016/j.compag.2016.04.003 es_ES
dc.description.references Kumar, A., Sah, B., Singh, A. R., Deng, Y., He, X., Kumar, P., & Bansal, R. C. (2017). A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renewable and Sustainable Energy Reviews, 69, 596-609. doi:10.1016/j.rser.2016.11.191 es_ES
dc.description.references Rupnik, R., Kukar, M., Vračar, P., Košir, D., Pevec, D., & Bosnić, Z. (2019). AgroDSS: A decision support system for agriculture and farming. Computers and Electronics in Agriculture, 161, 260-271. doi:10.1016/j.compag.2018.04.001 es_ES
dc.description.references Rose, D. C., Sutherland, W. J., Parker, C., Lobley, M., Winter, M., Morris, C., … Dicks, L. V. (2016). Decision support tools for agriculture: Towards effective design and delivery. Agricultural Systems, 149, 165-174. doi:10.1016/j.agsy.2016.09.009 es_ES
dc.description.references Colaço, A. F., & Molin, J. P. (2016). Variable rate fertilization in citrus: a long term study. Precision Agriculture, 18(2), 169-191. doi:10.1007/s11119-016-9454-9 es_ES
dc.description.references Nawar, S., Corstanje, R., Halcro, G., Mulla, D., & Mouazen, A. M. (2017). Delineation of Soil Management Zones for Variable-Rate Fertilization. Advances in Agronomy, 175-245. doi:10.1016/bs.agron.2017.01.003 es_ES
dc.description.references Fountas, S., Carli, G., Sørensen, C. G., Tsiropoulos, Z., Cavalaris, C., Vatsanidou, A., … Tisserye, B. (2015). Farm management information systems: Current situation and future perspectives. Computers and Electronics in Agriculture, 115, 40-50. doi:10.1016/j.compag.2015.05.011 es_ES
dc.description.references Precision Agriculture in Europe: Legal, Social and Ethical Considerations—Think Tankhttp://www.europarl.europa.eu/thinktank/en/document.html?reference=EPRS_STU(2017)603207 es_ES
dc.subject.ods 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos es_ES
dc.subject.ods 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem