Mostrar el registro sencillo del ítem
dc.contributor.author | Sáiz Rubio, Verónica | es_ES |
dc.contributor.author | Rovira Más, Francisco | es_ES |
dc.date.accessioned | 2020-05-29T03:32:50Z | |
dc.date.available | 2020-05-29T03:32:50Z | |
dc.date.issued | 2020-02-03 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/144568 | |
dc.description.abstract | [EN] The information that crops offer is turned into profitable decisions only when efficiently managed. Current advances in data management are making Smart Farming grow exponentially as data have become the key element in modern agriculture to help producers with critical decision-making. Valuable advantages appear with objective information acquired through sensors with the aim of maximizing productivity and sustainability. This kind of data-based managed farms rely on data that can increase efficiency by avoiding the misuse of resources and the pollution of the environment. Data-driven agriculture, with the help of robotic solutions incorporating artificial intelligent techniques, sets the grounds for the sustainable agriculture of the future. This paper reviews the current status of advanced farm management systems by revisiting each crucial step, from data acquisition in crop fields to variable rate applications, so that growers can make optimized decisions to save money while protecting the environment and transforming how food will be produced to sustainably match the forthcoming population growth. | es_ES |
dc.description.sponsorship | This research article is part of a project that has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 737669. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | MDPI | es_ES |
dc.relation.ispartof | Agronomy | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Agriculture 4.0 | es_ES |
dc.subject | Big data | es_ES |
dc.subject | Farm management information system (FMIS) | es_ES |
dc.subject | Robotics | es_ES |
dc.subject | IoT | es_ES |
dc.subject | Variable-rate technology (VRT) | es_ES |
dc.subject | AI | es_ES |
dc.subject.classification | INGENIERIA AGROFORESTAL | es_ES |
dc.title | From Smart Farming towards Agriculture 5.0: A Review on Crop Data Management | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/agronomy10020207 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/737669/EU/Intelligent decision from vineyard robots/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Rural y Agroalimentaria - Departament d'Enginyeria Rural i Agroalimentària | es_ES |
dc.description.bibliographicCitation | Sáiz Rubio, V.; Rovira Más, F. (2020). From Smart Farming towards Agriculture 5.0: A Review on Crop Data Management. Agronomy. 10(2):1-21. https://doi.org/10.3390/agronomy10020207 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/agronomy10020207 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 21 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 10 | es_ES |
dc.description.issue | 2 | es_ES |
dc.identifier.eissn | 2073-4395 | es_ES |
dc.relation.pasarela | S\401996 | es_ES |
dc.description.references | Himesh, S. (2018). Digital revolution and Big Data: a new revolution in agriculture. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 13(021). doi:10.1079/pavsnnr201813021 | es_ES |
dc.description.references | Digital Agriculture: Improving Profitabilityhttps://www.accenture.com/_acnmedia/accenture/conversion-assets/dotcom/documents/global/pdf/digital_3/accenture-digital-agriculture-point-of-view.pdf | es_ES |
dc.description.references | Digital Farming: What Does It Really Mean?http://www.cema-agri.org/publication/digital-farming-what-does-it-really-mean | es_ES |
dc.description.references | Agriculture Needs to Attract More Young Peoplehttp://www.gainhealth.org/knowledge-centre/worlds-farmers-age-new-blood-needed | es_ES |
dc.description.references | Generational Renewalhttps://enrd.ec.europa.eu/enrd-thematic-work/generational-renewal_en | es_ES |
dc.description.references | What is IoT in Agriculture? Farmers Aren’t Quite Sure Despite $4bn US Opportunity—Reporthttps://agfundernews.com/iot-agriculture-farmers-arent-quite-sure-despite-4bn-us-opportunity.html | es_ES |
dc.description.references | Precision Agriculture Yields Higher Profits, Lower Riskshttps://www.hpe.com/us/en/insights/articles/precision-agriculture-yields-higher-profits-lower-risks-1806.html | es_ES |
dc.description.references | Tzounis, A., Katsoulas, N., Bartzanas, T., & Kittas, C. (2017). Internet of Things in agriculture, recent advances and future challenges. Biosystems Engineering, 164, 31-48. doi:10.1016/j.biosystemseng.2017.09.007 | es_ES |
dc.description.references | From Dirt to Data: The Second Green Revolution and IoT. Deloitte insightshttps://www2.deloitte.com/insights/us/en/deloitte-review/issue-18/second-green-revolution-and-internet-of-things.html#endnote-sup-9 | es_ES |
dc.description.references | Big Data: The Next Frontier for Innovation, Competition, and Productivity | McKinseyhttps://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/big-data-the-next-frontier-for-innovation | es_ES |
dc.description.references | Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M.-J. (2017). Big Data in Smart Farming – A review. Agricultural Systems, 153, 69-80. doi:10.1016/j.agsy.2017.01.023 | es_ES |
dc.description.references | Kamilaris, A., Kartakoullis, A., & Prenafeta-Boldú, F. X. (2017). A review on the practice of big data analysis in agriculture. Computers and Electronics in Agriculture, 143, 23-37. doi:10.1016/j.compag.2017.09.037 | es_ES |
dc.description.references | How Big Data Will Change Agriculturehttps://proagrica.com/news/how-big-data-will-change-agriculture/ | es_ES |
dc.description.references | Big Data Coordination Platform. Proposal to the CGIAR Fund Councilhttps://cgspace.cgiar.org/handle/10947/4303 | es_ES |
dc.description.references | Zambon, I., Cecchini, M., Egidi, G., Saporito, M. G., & Colantoni, A. (2019). Revolution 4.0: Industry vs. Agriculture in a Future Development for SMEs. Processes, 7(1), 36. doi:10.3390/pr7010036 | es_ES |
dc.description.references | How AI Is Transforming Agriculturehttps://www.forbes.com/sites/cognitiveworld/2019/07/05/how-ai-is-transforming-agriculture/ | es_ES |
dc.description.references | Bechar, A., & Vigneault, C. (2016). Agricultural robots for field operations: Concepts and components. Biosystems Engineering, 149, 94-111. doi:10.1016/j.biosystemseng.2016.06.014 | es_ES |
dc.description.references | Bechar, A., & Vigneault, C. (2017). Agricultural robots for field operations. Part 2: Operations and systems. Biosystems Engineering, 153, 110-128. doi:10.1016/j.biosystemseng.2016.11.004 | es_ES |
dc.description.references | Ramin Shamshiri, R., Weltzien, C., A. Hameed, I., J. Yule, I., … E. Grift, T. (2018). Research and development in agricultural robotics: A perspective of digital farming. International Journal of Agricultural and Biological Engineering, 11(4), 1-11. doi:10.25165/j.ijabe.20181104.4278 | es_ES |
dc.description.references | Farming 4.0: The Future of Agriculture?https://www.euractiv.com/section/agriculture-food/infographic/farming-4-0-the-future-of-agriculture/ | es_ES |
dc.description.references | Ag Tech Deal Activity More Than Tripleshttps://www.cbinsights.com/research/agriculture-farm-tech-startup-funding-trends/ | es_ES |
dc.description.references | AI, Robotics, And the Future of Precision Agriculturehttps://www.cbinsights.com/research/ai-robotics-agriculture-tech-startups-future/ | es_ES |
dc.description.references | VineScout European Projectwww.vinescout.eu | es_ES |
dc.description.references | Precision Farming: A New Approach to Crop Managementhttp://agpublications.tamu.edu/pubs/eng/l5177.pdf | es_ES |
dc.description.references | Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculture—a worldwide overview. Computers and Electronics in Agriculture, 36(2-3), 113-132. doi:10.1016/s0168-1699(02)00096-0 | es_ES |
dc.description.references | MIAO, Y., MULLA, D. J., & ROBERT, P. C. (2018). An integrated approach to site-specific management zone delineation. Frontiers of Agricultural Science and Engineering, 0(0), 0. doi:10.15302/j-fase-2018230 | es_ES |
dc.description.references | Klassen, S. P., Villa, J., Adamchuk, V., & Serraj, R. (2014). Soil mapping for improved phenotyping of drought resistance in lowland rice fields. Field Crops Research, 167, 112-118. doi:10.1016/j.fcr.2014.07.007 | es_ES |
dc.description.references | Khanal, S., Fulton, J., & Shearer, S. (2017). An overview of current and potential applications of thermal remote sensing in precision agriculture. Computers and Electronics in Agriculture, 139, 22-32. doi:10.1016/j.compag.2017.05.001 | es_ES |
dc.description.references | Aravind, K. R., Raja, P., & Pérez-Ruiz, M. (2017). Task-based agricultural mobile robots in arable farming: A review. Spanish Journal of Agricultural Research, 15(1), e02R01. doi:10.5424/sjar/2017151-9573 | es_ES |
dc.description.references | Roldán, J. J., Cerro, J. del, Garzón‐Ramos, D., Garcia‐Aunon, P., Garzón, M., León, J. de, & Barrientos, A. (2018). Robots in Agriculture: State of Art and Practical Experiences. Service Robots. doi:10.5772/intechopen.69874 | es_ES |
dc.description.references | Gonzalez-de-Santos, P., Ribeiro, A., Fernandez-Quintanilla, C., Lopez-Granados, F., Brandstoetter, M., Tomic, S., … Debilde, B. (2016). Fleets of robots for environmentally-safe pest control in agriculture. Precision Agriculture, 18(4), 574-614. doi:10.1007/s11119-016-9476-3 | es_ES |
dc.description.references | What’s Slowing the Use of Robots in the Ag Industry?https://www.therobotreport.com/whats-slowing-the-use-of-robots-in-the-ag-industry/ | es_ES |
dc.description.references | Bogue, R. (2016). Robots poised to revolutionise agriculture. Industrial Robot: An International Journal, 43(5), 450-456. doi:10.1108/ir-05-2016-0142 | es_ES |
dc.description.references | Features & Benefits OZ Weeding Robothttps://www.naio-technologies.com/en/agricultural-equipment/weeding-robot-oz/ | es_ES |
dc.description.references | Robotics for Sustainable Broad-Acre Agriculturehttps://www.researchgate.net/publication/283722961_Robotics_for_Sustainable_Broad-Acre_Agriculture | es_ES |
dc.description.references | The Ultimate Guide to Agricultural Roboticshttps://www.roboticsbusinessreview.com/agriculture/the_ultimate_guide_to_agricultural_robotics/ | es_ES |
dc.description.references | Kweon, G., Lund, E., & Maxton, C. (2013). Soil organic matter and cation-exchange capacity sensing with on-the-go electrical conductivity and optical sensors. Geoderma, 199, 80-89. doi:10.1016/j.geoderma.2012.11.001 | es_ES |
dc.description.references | Agricultural Robots—Present and Future Applications (Videos Included)https://emerj.com/ai-sector-overviews/agricultural-robots-present-future-applications/ | es_ES |
dc.description.references | Köksal, Ö., & Tekinerdogan, B. (2018). Architecture design approach for IoT-based farm management information systems. Precision Agriculture, 20(5), 926-958. doi:10.1007/s11119-018-09624-8 | es_ES |
dc.description.references | Rovira-Más, F., & Sáiz-Rubio, V. (2013). Crop Biometric Maps: The Key to Prediction. Sensors, 13(9), 12698-12743. doi:10.3390/s130912698 | es_ES |
dc.description.references | Oliver, M. A., & Webster, R. (2014). A tutorial guide to geostatistics: Computing and modelling variograms and kriging. CATENA, 113, 56-69. doi:10.1016/j.catena.2013.09.006 | es_ES |
dc.description.references | Adamchuk, V. ., Hummel, J. ., Morgan, M. ., & Upadhyaya, S. . (2004). On-the-go soil sensors for precision agriculture. Computers and Electronics in Agriculture, 44(1), 71-91. doi:10.1016/j.compag.2004.03.002 | es_ES |
dc.description.references | Cossell, S., Whitty, M., Liu, S., & Tang, J. (2016). Spatial Map Generation from Low Cost Ground Vehicle Mounted Monocular Camera. IFAC-PapersOnLine, 49(16), 231-236. doi:10.1016/j.ifacol.2016.10.043 | es_ES |
dc.description.references | N. Zhang, & R. K. Taylor. (2001). APPLICATIONS OF A FIELD LEVEL GEOGRAPHIC INFORMATION SYSTEM (FIS) IN PRECISION AGRICULTURE. Applied Engineering in Agriculture, 17(6). doi:10.13031/2013.6829 | es_ES |
dc.description.references | Runquist, S., Zhang, N., & Taylor, R. K. (2001). Development of a field-level geographic information system. Computers and Electronics in Agriculture, 31(2), 201-209. doi:10.1016/s0168-1699(00)00155-1 | es_ES |
dc.description.references | Granular Farm Management Software, Precision Agriculture, Agricultural Softwarehttps://granular.ag/ | es_ES |
dc.description.references | Capterra. Farm Management Softwarewww.capterra.com | es_ES |
dc.description.references | Top 9 Farm Management Software—Compare Reviews, Features, Pricing in 2019https://www.predictiveanalyticstoday.com/top-farm-management-software/ | es_ES |
dc.description.references | Srivastava, P. K., & Singh, R. M. (2016). GIS based integrated modelling framework for agricultural canal system simulation and management in Indo-Gangetic plains of India. Agricultural Water Management, 163, 37-47. doi:10.1016/j.agwat.2015.08.025 | es_ES |
dc.description.references | Giusti, E., & Marsili-Libelli, S. (2015). A Fuzzy Decision Support System for irrigation and water conservation in agriculture. Environmental Modelling & Software, 63, 73-86. doi:10.1016/j.envsoft.2014.09.020 | es_ES |
dc.description.references | Asfaw, D., Black, E., Brown, M., Nicklin, K. J., Otu-Larbi, F., Pinnington, E., … Quaife, T. (2018). TAMSAT-ALERT v1: a new framework for agricultural decision support. Geoscientific Model Development, 11(6), 2353-2371. doi:10.5194/gmd-11-2353-2018 | es_ES |
dc.description.references | https://dssat.net | es_ES |
dc.description.references | Navarro-Hellín, H., Martínez-del-Rincon, J., Domingo-Miguel, R., Soto-Valles, F., & Torres-Sánchez, R. (2016). A decision support system for managing irrigation in agriculture. Computers and Electronics in Agriculture, 124, 121-131. doi:10.1016/j.compag.2016.04.003 | es_ES |
dc.description.references | Kumar, A., Sah, B., Singh, A. R., Deng, Y., He, X., Kumar, P., & Bansal, R. C. (2017). A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renewable and Sustainable Energy Reviews, 69, 596-609. doi:10.1016/j.rser.2016.11.191 | es_ES |
dc.description.references | Rupnik, R., Kukar, M., Vračar, P., Košir, D., Pevec, D., & Bosnić, Z. (2019). AgroDSS: A decision support system for agriculture and farming. Computers and Electronics in Agriculture, 161, 260-271. doi:10.1016/j.compag.2018.04.001 | es_ES |
dc.description.references | Rose, D. C., Sutherland, W. J., Parker, C., Lobley, M., Winter, M., Morris, C., … Dicks, L. V. (2016). Decision support tools for agriculture: Towards effective design and delivery. Agricultural Systems, 149, 165-174. doi:10.1016/j.agsy.2016.09.009 | es_ES |
dc.description.references | Colaço, A. F., & Molin, J. P. (2016). Variable rate fertilization in citrus: a long term study. Precision Agriculture, 18(2), 169-191. doi:10.1007/s11119-016-9454-9 | es_ES |
dc.description.references | Nawar, S., Corstanje, R., Halcro, G., Mulla, D., & Mouazen, A. M. (2017). Delineation of Soil Management Zones for Variable-Rate Fertilization. Advances in Agronomy, 175-245. doi:10.1016/bs.agron.2017.01.003 | es_ES |
dc.description.references | Fountas, S., Carli, G., Sørensen, C. G., Tsiropoulos, Z., Cavalaris, C., Vatsanidou, A., … Tisserye, B. (2015). Farm management information systems: Current situation and future perspectives. Computers and Electronics in Agriculture, 115, 40-50. doi:10.1016/j.compag.2015.05.011 | es_ES |
dc.description.references | Precision Agriculture in Europe: Legal, Social and Ethical Considerations—Think Tankhttp://www.europarl.europa.eu/thinktank/en/document.html?reference=EPRS_STU(2017)603207 | es_ES |
dc.subject.ods | 07.- Asegurar el acceso a energías asequibles, fiables, sostenibles y modernas para todos | es_ES |
dc.subject.ods | 13.- Tomar medidas urgentes para combatir el cambio climático y sus efectos | es_ES |