Valavanis, K. P., & Vachtsevanos, G. J. (Eds.). (2015). Handbook of Unmanned Aerial Vehicles. doi:10.1007/978-90-481-9707-1
20 Great UAV Applications Areas for Droneshttp://air-vid.com/wp/20-great-uav-applications-areas-drones/
Industry Experts—Microdroneshttps://www.microdrones.com/en/industry-experts/
[+]
Valavanis, K. P., & Vachtsevanos, G. J. (Eds.). (2015). Handbook of Unmanned Aerial Vehicles. doi:10.1007/978-90-481-9707-1
20 Great UAV Applications Areas for Droneshttp://air-vid.com/wp/20-great-uav-applications-areas-drones/
Industry Experts—Microdroneshttps://www.microdrones.com/en/industry-experts/
Li, J., & Han, Y. (2017). Optimal Resource Allocation for Packet Delay Minimization in Multi-Layer UAV Networks. IEEE Communications Letters, 21(3), 580-583. doi:10.1109/lcomm.2016.2626293
Stuchlík, R., Stachoň, Z., Láska, K., & Kubíček, P. (2015). Unmanned Aerial Vehicle – Efficient mapping tool available for recent research in polar regions. Czech Polar Reports, 5(2), 210-221. doi:10.5817/cpr2015-2-18
Pulver, A., & Wei, R. (2018). Optimizing the spatial location of medical drones. Applied Geography, 90, 9-16. doi:10.1016/j.apgeog.2017.11.009
Claesson, A., Svensson, L., Nordberg, P., Ringh, M., Rosenqvist, M., Djarv, T., … Hollenberg, J. (2017). Drones may be used to save lives in out of hospital cardiac arrest due to drowning. Resuscitation, 114, 152-156. doi:10.1016/j.resuscitation.2017.01.003
Reineman, B. D., Lenain, L., Statom, N. M., & Melville, W. K. (2013). Development and Testing of Instrumentation for UAV-Based Flux Measurements within Terrestrial and Marine Atmospheric Boundary Layers. Journal of Atmospheric and Oceanic Technology, 30(7), 1295-1319. doi:10.1175/jtech-d-12-00176.1
LaValle, S. M. (2006). Planning Algorithms. doi:10.1017/cbo9780511546877
Elbanhawi, M., & Simic, M. (2014). Sampling-Based Robot Motion Planning: A Review. IEEE Access, 2, 56-77. doi:10.1109/access.2014.2302442
Hernandez, K., Bacca, B., & Posso, B. (2017). Multi-goal Path Planning Autonomous System for Picking up and Delivery Tasks in Mobile Robotics. IEEE Latin America Transactions, 15(2), 232-238. doi:10.1109/tla.2017.7854617
Kohlbrecher, S., von Stryk, O., Meyer, J., & Klingauf, U. (2011). A flexible and scalable SLAM system with full 3D motion estimation. 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics. doi:10.1109/ssrr.2011.6106777
Aguilar, W., & Morales, S. (2016). 3D Environment Mapping Using the Kinect V2 and Path Planning Based on RRT Algorithms. Electronics, 5(4), 70. doi:10.3390/electronics5040070
Aguilar, W. G., Morales, S., Ruiz, H., & Abad, V. (2017). RRT* GL Based Optimal Path Planning for Real-Time Navigation of UAVs. Lecture Notes in Computer Science, 585-595. doi:10.1007/978-3-319-59147-6_50
Yao, P., Wang, H., & Su, Z. (2015). Hybrid UAV path planning based on interfered fluid dynamical system and improved RRT. IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society. doi:10.1109/iecon.2015.7392202
Yan, F., Liu, Y.-S., & Xiao, J.-Z. (2013). Path Planning in Complex 3D Environments Using a Probabilistic Roadmap Method. International Journal of Automation and Computing, 10(6), 525-533. doi:10.1007/s11633-013-0750-9
Yeh, H.-Y., Thomas, S., Eppstein, D., & Amato, N. M. (2012). UOBPRM: A uniformly distributed obstacle-based PRM. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. doi:10.1109/iros.2012.6385875
Denny, J., & Amatoo, N. M. (2013). Toggle PRM: A Coordinated Mapping of C-Free and C-Obstacle in Arbitrary Dimension. Algorithmic Foundations of Robotics X, 297-312. doi:10.1007/978-3-642-36279-8_18
Li, Q., Wei, C., Wu, J., & Zhu, X. (2014). Improved PRM method of low altitude penetration trajectory planning for UAVs. Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference. doi:10.1109/cgncc.2014.7007587
Ortiz-Arroyo, D. (2015). A hybrid 3D path planning method for UAVs. 2015 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED-UAS). doi:10.1109/red-uas.2015.7440999
Thanou, M., & Tzes, A. (2014). Distributed visibility-based coverage using a swarm of UAVs in known 3D-terrains. 2014 6th International Symposium on Communications, Control and Signal Processing (ISCCSP). doi:10.1109/isccsp.2014.6877904
Qu, Y., Zhang, Y., & Zhang, Y. (2014). Optimal flight path planning for UAVs in 3-D threat environment. 2014 International Conference on Unmanned Aircraft Systems (ICUAS). doi:10.1109/icuas.2014.6842250
Fang, Z., Luan, C., & Sun, Z. (2017). A 2D Voronoi-Based Random Tree for Path Planning in Complicated 3D Environments. Advances in Intelligent Systems and Computing, 433-445. doi:10.1007/978-3-319-48036-7_31
Khuswendi, T., Hindersah, H., & Adiprawita, W. (2011). UAV path planning using potential field and modified receding horizon A* 3D algorithm. Proceedings of the 2011 International Conference on Electrical Engineering and Informatics. doi:10.1109/iceei.2011.6021579
Chen, X., & Zhang, J. (2013). The Three-Dimension Path Planning of UAV Based on Improved Artificial Potential Field in Dynamic Environment. 2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics. doi:10.1109/ihmsc.2013.181
Rivera, D. M., Prieto, F. A., & Ramirez, R. (2012). Trajectory Planning for UAVs in 3D Environments Using a Moving Band in Potential Sigmoid Fields. 2012 Brazilian Robotics Symposium and Latin American Robotics Symposium. doi:10.1109/sbr-lars.2012.26
Liu Lifen, Shi Ruoxin, Li Shuandao, & Wu Jiang. (2016). Path planning for UAVS based on improved artificial potential field method through changing the repulsive potential function. 2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC). doi:10.1109/cgncc.2016.7829099
Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1(1), 269-271. doi:10.1007/bf01386390
Verscheure, L., Peyrodie, L., Makni, N., Betrouni, N., Maouche, S., & Vermandel, M. (2010). Dijkstra’s algorithm applied to 3D skeletonization of the brain vascular tree: Evaluation and application to symbolic. 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology. doi:10.1109/iembs.2010.5626112
Hart, P., Nilsson, N., & Raphael, B. (1968). A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics, 4(2), 100-107. doi:10.1109/tssc.1968.300136
Ferguson, D., & Stentz, A. (s. f.). Field D*: An Interpolation-Based Path Planner and Replanner. Robotics Research, 239-253. doi:10.1007/978-3-540-48113-3_22
De Filippis, L., Guglieri, G., & Quagliotti, F. (2011). Path Planning Strategies for UAVS in 3D Environments. Journal of Intelligent & Robotic Systems, 65(1-4), 247-264. doi:10.1007/s10846-011-9568-2
Gautam, S. A., & Verma, N. (2014). Path planning for unmanned aerial vehicle based on genetic algorithm & artificial neural network in 3D. 2014 International Conference on Data Mining and Intelligent Computing (ICDMIC). doi:10.1109/icdmic.2014.6954257
Maturana, D., & Scherer, S. (2015). 3D Convolutional Neural Networks for landing zone detection from LiDAR. 2015 IEEE International Conference on Robotics and Automation (ICRA). doi:10.1109/icra.2015.7139679
Iswanto, I., Wahyunggoro, O., & Imam Cahyadi, A. (2016). Quadrotor Path Planning Based on Modified Fuzzy Cell Decomposition Algorithm. TELKOMNIKA (Telecommunication Computing Electronics and Control), 14(2), 655. doi:10.12928/telkomnika.v14i2.2989
Duan, H., Yu, Y., Zhang, X., & Shao, S. (2010). Three-dimension path planning for UCAV using hybrid meta-heuristic ACO-DE algorithm. Simulation Modelling Practice and Theory, 18(8), 1104-1115. doi:10.1016/j.simpat.2009.10.006
He, Y., Zeng, Q., Liu, J., Xu, G., & Deng, X. (2013). Path planning for indoor UAV based on Ant Colony Optimization. 2013 25th Chinese Control and Decision Conference (CCDC). doi:10.1109/ccdc.2013.6561444
Zhang, Y., Wu, L., & Wang, S. (2013). UCAV Path Planning by Fitness-Scaling Adaptive Chaotic Particle Swarm Optimization. Mathematical Problems in Engineering, 2013, 1-9. doi:10.1155/2013/705238
Goel, U., Varshney, S., Jain, A., Maheshwari, S., & Shukla, A. (2018). Three Dimensional Path Planning for UAVs in Dynamic Environment using Glow-worm Swarm Optimization. Procedia Computer Science, 133, 230-239. doi:10.1016/j.procs.2018.07.028
YongBo, C., YueSong, M., JianQiao, Y., XiaoLong, S., & Nuo, X. (2017). Three-dimensional unmanned aerial vehicle path planning using modified wolf pack search algorithm. Neurocomputing, 266, 445-457. doi:10.1016/j.neucom.2017.05.059
Wang, G.-G., Chu, H. E., & Mirjalili, S. (2016). Three-dimensional path planning for UCAV using an improved bat algorithm. Aerospace Science and Technology, 49, 231-238. doi:10.1016/j.ast.2015.11.040
Aghababa, M. P. (2012). 3D path planning for underwater vehicles using five evolutionary optimization algorithms avoiding static and energetic obstacles. Applied Ocean Research, 38, 48-62. doi:10.1016/j.apor.2012.06.002
Mac, T. T., Copot, C., Tran, D. T., & De Keyser, R. (2016). Heuristic approaches in robot path planning: A survey. Robotics and Autonomous Systems, 86, 13-28. doi:10.1016/j.robot.2016.08.001
Szirmay-Kalos, L., & Márton, G. (1998). Worst-case versus average case complexity of ray-shooting. Computing, 61(2), 103-131. doi:10.1007/bf02684409
Berger, M. J., & Oliger, J. (1984). Adaptive mesh refinement for hyperbolic partial differential equations. Journal of Computational Physics, 53(3), 484-512. doi:10.1016/0021-9991(84)90073-1
Min, C., & Gibou, F. (2006). A second order accurate projection method for the incompressible Navier–Stokes equations on non-graded adaptive grids. Journal of Computational Physics, 219(2), 912-929. doi:10.1016/j.jcp.2006.07.019
Hasbestan, J. J., & Senocak, I. (2018). Binarized-octree generation for Cartesian adaptive mesh refinement around immersed geometries. Journal of Computational Physics, 368, 179-195. doi:10.1016/j.jcp.2018.04.039
Pantano, C., Deiterding, R., Hill, D. J., & Pullin, D. I. (2007). A low numerical dissipation patch-based adaptive mesh refinement method for large-eddy simulation of compressible flows. Journal of Computational Physics, 221(1), 63-87. doi:10.1016/j.jcp.2006.06.011
Ryde, J., & Hu, H. (2009). 3D mapping with multi-resolution occupied voxel lists. Autonomous Robots, 28(2), 169-185. doi:10.1007/s10514-009-9158-3
Samet, H., & Kochut, A. (s. f.). Octree approximation an compression methods. Proceedings. First International Symposium on 3D Data Processing Visualization and Transmission. doi:10.1109/tdpvt.2002.1024101
Samaniego, F., Sanchis, J., Garcia-Nieto, S., & Simarro, R. (2017). UAV motion planning and obstacle avoidance based on adaptive 3D cell decomposition: Continuous space vs discrete space. 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM). doi:10.1109/etcm.2017.8247533
Skoldstam, M., Akesson, K., & Fabian, M. (2007). Modeling of discrete event systems using finite automata with variables. 2007 46th IEEE Conference on Decision and Control. doi:10.1109/cdc.2007.4434894
Yang, Y.-H. E., & Prasanna, V. K. (2011). Space-time tradeoff in regular expression matching with semi-deterministic finite automata. 2011 Proceedings IEEE INFOCOM. doi:10.1109/infcom.2011.5934986
Normativa Sobre Drones en España [2019]—Aerial Insightshttp://www.aerial-insights.co/blog/normativa-drones-espana/
Disposición 15721 del BOE núm. 316 de 2017 - BOE.eshttps://www.boe.es/boe/dias/2017/12/29/pdfs/BOE-A-2017-15721.pdf
Velasco-Carrau, J., García-Nieto, S., Salcedo, J. V., & Bishop, R. H. (2016). Multi-Objective Optimization for Wind Estimation and Aircraft Model Identification. Journal of Guidance, Control, and Dynamics, 39(2), 372-389. doi:10.2514/1.g001294
Vanegas, G., Samaniego, F., Girbes, V., Armesto, L., & Garcia-Nieto, S. (2018). Smooth 3D path planning for non-holonomic UAVs. 2018 7th International Conference on Systems and Control (ICSC). doi:10.1109/icosc.2018.8587835
Samaniego, F., Sanchis, J., Garcia-Nieto, S., & Simarro, R. (2018). Comparative Study of 3-Dimensional Path Planning Methods Constrained by the Maneuverability of Unmanned Aerial Vehicles. 2018 7th International Conference on Systems and Control (ICSC). doi:10.1109/icosc.2018.8587810
[-]