- -

Photographic Noise Performance Measures Based on RAW Files Analysis of Consumer Cameras

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Photographic Noise Performance Measures Based on RAW Files Analysis of Consumer Cameras

Mostrar el registro completo del ítem

Igual García, J. (2019). Photographic Noise Performance Measures Based on RAW Files Analysis of Consumer Cameras. Electronics. 8(11):1-30. https://doi.org/10.3390/electronics8111284

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/144576

Ficheros en el ítem

Metadatos del ítem

Título: Photographic Noise Performance Measures Based on RAW Files Analysis of Consumer Cameras
Autor: Igual García, Jorge
Entidad UPV: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Fecha difusión:
Resumen:
[EN] Photography is being benefited from the huge improvement in CMOS image sensors. New cameras extend the dynamic range allowing photographers to take photos with a higher quality than they could imagine one decade ago. ...[+]
Palabras clave: Photography , CMOS image sensor , Noise , Signal to noise ratio , Dynamic range
Derechos de uso: Reconocimiento (by)
Fuente:
Electronics. (eissn: 2079-9292 )
DOI: 10.3390/electronics8111284
Editorial:
MDPI AG
Versión del editor: https://doi.org/10.3390/electronics8111284
Tipo: Artículo

References

Camera Imaging Products Association: Digital Cameras Reporthttp://cipa.jp/stats/dc_e.html

Gye, L. (2007). Picture This: the Impact of Mobile Camera Phones on Personal Photographic Practices. Continuum, 21(2), 279-288. doi:10.1080/10304310701269107

Bhandari, A., & Raskar, R. (2016). Signal Processing for Time-of-Flight Imaging Sensors: An introduction to inverse problems in computational 3-D imaging. IEEE Signal Processing Magazine, 33(5), 45-58. doi:10.1109/msp.2016.2582218 [+]
Camera Imaging Products Association: Digital Cameras Reporthttp://cipa.jp/stats/dc_e.html

Gye, L. (2007). Picture This: the Impact of Mobile Camera Phones on Personal Photographic Practices. Continuum, 21(2), 279-288. doi:10.1080/10304310701269107

Bhandari, A., & Raskar, R. (2016). Signal Processing for Time-of-Flight Imaging Sensors: An introduction to inverse problems in computational 3-D imaging. IEEE Signal Processing Magazine, 33(5), 45-58. doi:10.1109/msp.2016.2582218

Wang, J., Zhang, C., & Hao, P. (2011). New color filter arrays of high light sensitivity and high demosaicking performance. 2011 18th IEEE International Conference on Image Processing. doi:10.1109/icip.2011.6116336

Chan, C.-C., & Chen, H. H. (2018). Improving the Reliability of Phase Detection Autofocus. Electronic Imaging, 2018(5), 241-1-241-5. doi:10.2352/issn.2470-1173.2018.05.pmii-241

Kirkpatrick, K. (2019). The edge of computational photography. Communications of the ACM, 62(7), 14-16. doi:10.1145/3329721

Koppal, S. J. (2016). A Survey of Computational Photography in the Small: Creating intelligent cameras for the next wave of miniature devices. IEEE Signal Processing Magazine, 33(5), 16-22. doi:10.1109/msp.2016.2581418

CMOS Image Sensor Market: Forecasts from 2019 to 2024https://www.knowledge-sourcing.com/report/cmos-Image-sensor-market

Photonstophotos.nethttp://photonstophotos.net

Dxomarkhttp://dxomark.com

Boukhayma, A., Peizerat, A., & Enz, C. (2016). Temporal Readout Noise Analysis and Reduction Techniques for Low-Light CMOS Image Sensors. IEEE Transactions on Electron Devices, 63(1), 72-78. doi:10.1109/ted.2015.2434799

Vargas-Sierra, S., Linán-Cembrano, G., & Rodríguez-Vázquez, A. (2015). A 151 dB High Dynamic Range CMOS Image Sensor Chip Architecture With Tone Mapping Compression Embedded In-Pixel. IEEE Sensors Journal, 15(1), 180-195. doi:10.1109/jsen.2014.2340875

Hassan, N. B., Huang, Y., Shou, Z., Ghassemlooy, Z., Sturniolo, A., Zvanovec, S., … Le-Minh, H. (2018). Impact of Camera Lens Aperture and the Light Source Size on Optical Camera Communications. 2018 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP). doi:10.1109/csndsp.2018.8471766

Hirsch, J., & Curcio, C. A. (1989). The spatial resolution capacity of human foveal retina. Vision Research, 29(9), 1095-1101. doi:10.1016/0042-6989(89)90058-8

ColorChecker Classic Charthttps://xritephoto.com/colorchecker-classic

Wang, F., & Theuwissen, A. (2017). Linearity analysis of a CMOS image sensor. Electronic Imaging, 2017(11), 84-90. doi:10.2352/issn.2470-1173.2017.11.imse-191

Wakashima, S., Kusuhara, F., Kuroda, R., & Sugawa, S. (2015). Analysis of pixel gain and linearity of CMOS image sensor using floating capacitor load readout operation. Image Sensors and Imaging Systems 2015. doi:10.1117/12.2083111

Wang, F., Han, L., & Theuwissen, A. J. P. (2018). Development and Evaluation of a Highly Linear CMOS Image Sensor With a Digitally Assisted Linearity Calibration. IEEE Journal of Solid-State Circuits, 53(10), 2970-2981. doi:10.1109/jssc.2018.2856252

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem