- -

Photographic Noise Performance Measures Based on RAW Files Analysis of Consumer Cameras

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Photographic Noise Performance Measures Based on RAW Files Analysis of Consumer Cameras

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Igual García, Jorge es_ES
dc.date.accessioned 2020-05-29T03:33:07Z
dc.date.available 2020-05-29T03:33:07Z
dc.date.issued 2019-11-04 es_ES
dc.identifier.uri http://hdl.handle.net/10251/144576
dc.description.abstract [EN] Photography is being benefited from the huge improvement in CMOS image sensors. New cameras extend the dynamic range allowing photographers to take photos with a higher quality than they could imagine one decade ago. However, the existence of different technologies make more complicated the photographic analysis of how to determine the optimal camera exposure settings. In this paper, we analyze how the different noise models are translated to different signal to noise SNR curve patterns and which factors are relevant. In particular, we discuss profoundly the relationships between exposure settings (shutter speed, aperture and ISO). Since a fair comparison between cameras can be tricky because of different pixel size, sensor format or ISO scale definition, we explain how the pixel analysis of a camera can be translated to a more helpful universal photographic noise measure based on human perception and common photography rules. We analyze the RAW files of different camera models and show how the noise performance analysis (SNR and dynamic range) interact with photographer's requirements. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Electronics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Photography es_ES
dc.subject CMOS image sensor es_ES
dc.subject Noise es_ES
dc.subject Signal to noise ratio es_ES
dc.subject Dynamic range es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title Photographic Noise Performance Measures Based on RAW Files Analysis of Consumer Cameras es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/electronics8111284 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Igual García, J. (2019). Photographic Noise Performance Measures Based on RAW Files Analysis of Consumer Cameras. Electronics. 8(11):1-30. https://doi.org/10.3390/electronics8111284 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/electronics8111284 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 30 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 11 es_ES
dc.identifier.eissn 2079-9292 es_ES
dc.relation.pasarela S\412072 es_ES
dc.description.references Camera Imaging Products Association: Digital Cameras Reporthttp://cipa.jp/stats/dc_e.html es_ES
dc.description.references Gye, L. (2007). Picture This: the Impact of Mobile Camera Phones on Personal Photographic Practices. Continuum, 21(2), 279-288. doi:10.1080/10304310701269107 es_ES
dc.description.references Bhandari, A., & Raskar, R. (2016). Signal Processing for Time-of-Flight Imaging Sensors: An introduction to inverse problems in computational 3-D imaging. IEEE Signal Processing Magazine, 33(5), 45-58. doi:10.1109/msp.2016.2582218 es_ES
dc.description.references Wang, J., Zhang, C., & Hao, P. (2011). New color filter arrays of high light sensitivity and high demosaicking performance. 2011 18th IEEE International Conference on Image Processing. doi:10.1109/icip.2011.6116336 es_ES
dc.description.references Chan, C.-C., & Chen, H. H. (2018). Improving the Reliability of Phase Detection Autofocus. Electronic Imaging, 2018(5), 241-1-241-5. doi:10.2352/issn.2470-1173.2018.05.pmii-241 es_ES
dc.description.references Kirkpatrick, K. (2019). The edge of computational photography. Communications of the ACM, 62(7), 14-16. doi:10.1145/3329721 es_ES
dc.description.references Koppal, S. J. (2016). A Survey of Computational Photography in the Small: Creating intelligent cameras for the next wave of miniature devices. IEEE Signal Processing Magazine, 33(5), 16-22. doi:10.1109/msp.2016.2581418 es_ES
dc.description.references CMOS Image Sensor Market: Forecasts from 2019 to 2024https://www.knowledge-sourcing.com/report/cmos-Image-sensor-market es_ES
dc.description.references Photonstophotos.nethttp://photonstophotos.net es_ES
dc.description.references Dxomarkhttp://dxomark.com es_ES
dc.description.references Boukhayma, A., Peizerat, A., & Enz, C. (2016). Temporal Readout Noise Analysis and Reduction Techniques for Low-Light CMOS Image Sensors. IEEE Transactions on Electron Devices, 63(1), 72-78. doi:10.1109/ted.2015.2434799 es_ES
dc.description.references Vargas-Sierra, S., Linán-Cembrano, G., & Rodríguez-Vázquez, A. (2015). A 151 dB High Dynamic Range CMOS Image Sensor Chip Architecture With Tone Mapping Compression Embedded In-Pixel. IEEE Sensors Journal, 15(1), 180-195. doi:10.1109/jsen.2014.2340875 es_ES
dc.description.references Hassan, N. B., Huang, Y., Shou, Z., Ghassemlooy, Z., Sturniolo, A., Zvanovec, S., … Le-Minh, H. (2018). Impact of Camera Lens Aperture and the Light Source Size on Optical Camera Communications. 2018 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP). doi:10.1109/csndsp.2018.8471766 es_ES
dc.description.references Hirsch, J., & Curcio, C. A. (1989). The spatial resolution capacity of human foveal retina. Vision Research, 29(9), 1095-1101. doi:10.1016/0042-6989(89)90058-8 es_ES
dc.description.references ColorChecker Classic Charthttps://xritephoto.com/colorchecker-classic es_ES
dc.description.references Wang, F., & Theuwissen, A. (2017). Linearity analysis of a CMOS image sensor. Electronic Imaging, 2017(11), 84-90. doi:10.2352/issn.2470-1173.2017.11.imse-191 es_ES
dc.description.references Wakashima, S., Kusuhara, F., Kuroda, R., & Sugawa, S. (2015). Analysis of pixel gain and linearity of CMOS image sensor using floating capacitor load readout operation. Image Sensors and Imaging Systems 2015. doi:10.1117/12.2083111 es_ES
dc.description.references Wang, F., Han, L., & Theuwissen, A. J. P. (2018). Development and Evaluation of a Highly Linear CMOS Image Sensor With a Digitally Assisted Linearity Calibration. IEEE Journal of Solid-State Circuits, 53(10), 2970-2981. doi:10.1109/jssc.2018.2856252 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem