Tang, Q., Yu, B., Gao, L., Cong, H., Song, N., & Lu, C. (2018). Stimuli Responsive Nanoparticles for Controlled Anti-cancer Drug Release. Current Medicinal Chemistry, 25(16), 1837-1866. doi:10.2174/0929867325666180111095913
Aftab, S., Shah, A., Nadhman, A., Kurbanoglu, S., Aysıl Ozkan, S., Dionysiou, D. D., … Aminabhavi, T. M. (2018). Nanomedicine: An effective tool in cancer therapy. International Journal of Pharmaceutics, 540(1-2), 132-149. doi:10.1016/j.ijpharm.2018.02.007
Kozlovskaya, V., Xue, B., & Kharlampieva, E. (2016). Shape-Adaptable Polymeric Particles for Controlled Delivery. Macromolecules, 49(22), 8373-8386. doi:10.1021/acs.macromol.6b01740
[+]
Tang, Q., Yu, B., Gao, L., Cong, H., Song, N., & Lu, C. (2018). Stimuli Responsive Nanoparticles for Controlled Anti-cancer Drug Release. Current Medicinal Chemistry, 25(16), 1837-1866. doi:10.2174/0929867325666180111095913
Aftab, S., Shah, A., Nadhman, A., Kurbanoglu, S., Aysıl Ozkan, S., Dionysiou, D. D., … Aminabhavi, T. M. (2018). Nanomedicine: An effective tool in cancer therapy. International Journal of Pharmaceutics, 540(1-2), 132-149. doi:10.1016/j.ijpharm.2018.02.007
Kozlovskaya, V., Xue, B., & Kharlampieva, E. (2016). Shape-Adaptable Polymeric Particles for Controlled Delivery. Macromolecules, 49(22), 8373-8386. doi:10.1021/acs.macromol.6b01740
Mishra, D. K., Shandilya, R., & Mishra, P. K. (2018). Lipid based nanocarriers: a translational perspective. Nanomedicine: Nanotechnology, Biology and Medicine, 14(7), 2023-2050. doi:10.1016/j.nano.2018.05.021
Seidi, F., Jenjob, R., Phakkeeree, T., & Crespy, D. (2018). Saccharides, oligosaccharides, and polysaccharides nanoparticles for biomedical applications. Journal of Controlled Release, 284, 188-212. doi:10.1016/j.jconrel.2018.06.026
Chen, W., Zhou, S., Ge, L., Wu, W., & Jiang, X. (2018). Translatable High Drug Loading Drug Delivery Systems Based on Biocompatible Polymer Nanocarriers. Biomacromolecules, 19(6), 1732-1745. doi:10.1021/acs.biomac.8b00218
Vázquez-González, M., & Willner, I. (2018). DNA-Responsive SiO2Nanoparticles, Metal–Organic Frameworks, and Microcapsules for Controlled Drug Release. Langmuir, 34(49), 14692-14710. doi:10.1021/acs.langmuir.8b00478
Farid, R. M., Youssef, N. A. H. A., & Kassem, A. A. (2018). Platform for Lipid Based Nanocarriers’ Formulation Components and their Potential Effects: A Literature Review. Current Pharmaceutical Design, 23(43), 6613-6629. doi:10.2174/1381612824666171128104814
Lombardo, D., Calandra, P., Barreca, D., Magazù, S., & Kiselev, M. (2016). Soft Interaction in Liposome Nanocarriers for Therapeutic Drug Delivery. Nanomaterials, 6(7), 125. doi:10.3390/nano6070125
Bansal, A., & Zhang, Y. (2014). Photocontrolled Nanoparticle Delivery Systems for Biomedical Applications. Accounts of Chemical Research, 47(10), 3052-3060. doi:10.1021/ar500217w
Kamaly, N., Yameen, B., Wu, J., & Farokhzad, O. C. (2016). Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chemical Reviews, 116(4), 2602-2663. doi:10.1021/acs.chemrev.5b00346
Coll, C., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2012). Gated Silica Mesoporous Supports for Controlled Release and Signaling Applications. Accounts of Chemical Research, 46(2), 339-349. doi:10.1021/ar3001469
Yi, S., Zheng, J., Lv, P., Zhang, D., Zheng, X., Zhang, Y., & Liao, R. (2018). Controlled Drug Release from Cyclodextrin-Gated Mesoporous Silica Nanoparticles Based on Switchable Host–Guest Interactions. Bioconjugate Chemistry, 29(9), 2884-2891. doi:10.1021/acs.bioconjchem.8b00416
Song, N., & Yang, Y.-W. (2015). Molecular and supramolecular switches on mesoporous silica nanoparticles. Chemical Society Reviews, 44(11), 3474-3504. doi:10.1039/c5cs00243e
Argyo, C., Weiss, V., Bräuchle, C., & Bein, T. (2013). Multifunctional Mesoporous Silica Nanoparticles as a Universal Platform for Drug Delivery. Chemistry of Materials, 26(1), 435-451. doi:10.1021/cm402592t
Lu, C.-H., & Willner, I. (2015). Stimuli-Responsive DNA-Functionalized Nano-/Microcontainers for Switchable and Controlled Release. Angewandte Chemie International Edition, 54(42), 12212-12235. doi:10.1002/anie.201503054
Zhang, Y., Yu, J., Bomba, H. N., Zhu, Y., & Gu, Z. (2016). Mechanical Force-Triggered Drug Delivery. Chemical Reviews, 116(19), 12536-12563. doi:10.1021/acs.chemrev.6b00369
Manzano, M., & Vallet-Regí, M. (2019). Ultrasound responsive mesoporous silica nanoparticles for biomedical applications. Chemical Communications, 55(19), 2731-2740. doi:10.1039/c8cc09389j
Zhao, T., Chen, L., Li, Q., & Li, X. (2018). Near-infrared light triggered drug release from mesoporous silica nanoparticles. Journal of Materials Chemistry B, 6(44), 7112-7121. doi:10.1039/c8tb01548a
Yang, P., Gai, S., & Lin, J. (2012). Functionalized mesoporous silica materials for controlled drug delivery. Chemical Society Reviews, 41(9), 3679. doi:10.1039/c2cs15308d
Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456
Llopis-Lorente, A., Díez, P., Sánchez, A., Marcos, M. D., Sancenón, F., Martínez-Ruiz, P., … Martínez-Máñez, R. (2017). Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nature Communications, 8(1). doi:10.1038/ncomms15511
Vivero-Escoto, J. L., Slowing, I. I., Trewyn, B. G., & Lin, V. S.-Y. (2010). Mesoporous Silica Nanoparticles for Intracellular Controlled Drug Delivery. Small, 6(18), 1952-1967. doi:10.1002/smll.200901789
Murugan, B., & Krishnan, U. M. (2018). Chemoresponsive smart mesoporous silica systems – An emerging paradigm for cancer therapy. International Journal of Pharmaceutics, 553(1-2), 310-326. doi:10.1016/j.ijpharm.2018.10.026
Moreira, A. F., Dias, D. R., & Correia, I. J. (2016). Stimuli-responsive mesoporous silica nanoparticles for cancer therapy: A review. Microporous and Mesoporous Materials, 236, 141-157. doi:10.1016/j.micromeso.2016.08.038
Chen, Y., Chen, H., & Shi, J. (2013). In Vivo Bio-Safety Evaluations and Diagnostic/Therapeutic Applications of Chemically Designed Mesoporous Silica Nanoparticles. Advanced Materials, 25(23), 3144-3176. doi:10.1002/adma.201205292
Florek, J., Caillard, R., & Kleitz, F. (2017). Evaluation of mesoporous silica nanoparticles for oral drug delivery – current status and perspective of MSNs drug carriers. Nanoscale, 9(40), 15252-15277. doi:10.1039/c7nr05762h
Bremmell, K. E., & Prestidge, C. A. (2018). Enhancing oral bioavailability of poorly soluble drugs with mesoporous silica based systems: opportunities and challenges. Drug Development and Industrial Pharmacy, 45(3), 349-358. doi:10.1080/03639045.2018.1542709
Chen, H., Zheng, D., Liu, J., Kuang, Y., Li, Q., Zhang, M., … Jiang, B. (2016). pH-Sensitive drug delivery system based on modified dextrin coated mesoporous silica nanoparticles. International Journal of Biological Macromolecules, 85, 596-603. doi:10.1016/j.ijbiomac.2016.01.038
Liu, J., Luo, Z., Zhang, J., Luo, T., Zhou, J., Zhao, X., & Cai, K. (2016). Hollow mesoporous silica nanoparticles facilitated drug delivery via cascade pH stimuli in tumor microenvironment for tumor therapy. Biomaterials, 83, 51-65. doi:10.1016/j.biomaterials.2016.01.008
Li, Z., Zhang, L., Tang, C., & Yin, C. (2017). Co-Delivery of Doxorubicin and Survivin shRNA-Expressing Plasmid Via Microenvironment-Responsive Dendritic Mesoporous Silica Nanoparticles for Synergistic Cancer Therapy. Pharmaceutical Research, 34(12), 2829-2841. doi:10.1007/s11095-017-2264-6
Cheng, W., Liang, C., Wang, X., Tsai, H., Liu, G., Peng, Y., … Zeng, X. (2017). A drug-self-gated and tumor microenvironment-responsive mesoporous silica vehicle: «four-in-one» versatile nanomedicine for targeted multidrug-resistant cancer therapy. Nanoscale, 9(43), 17063-17073. doi:10.1039/c7nr05450e
Zeng, X., Liu, G., Tao, W., Ma, Y., Zhang, X., He, F., … Pan, G. (2017). A Drug-Self-Gated Mesoporous Antitumor Nanoplatform Based on pH-Sensitive Dynamic Covalent Bond. Advanced Functional Materials, 27(11), 1605985. doi:10.1002/adfm.201605985
Yang, D., Wang, N., Ji, H., Sun, S., Dong, J., Zhong, Y., … Xu, H. (2018). Preparation of core/shell CdTe@hMSN for enhanced tumor vasculature-specific drug delivery. RSC Advances, 8(68), 38987-38994. doi:10.1039/c8ra07193d
Li, L., Sun, W., Li, L., Liu, Y., Wu, L., Wang, F., … Huang, Y. (2017). A pH-responsive sequential-disassembly nanohybrid for mitochondrial targeting. Nanoscale, 9(1), 314-325. doi:10.1039/c6nr07004c
Zhao, R., Li, T., Zheng, G., Jiang, K., Fan, L., & Shao, J. (2017). Simultaneous inhibition of growth and metastasis of hepatocellular carcinoma by co-delivery of ursolic acid and sorafenib using lactobionic acid modified and pH-sensitive chitosan-conjugated mesoporous silica nanocomplex. Biomaterials, 143, 1-16. doi:10.1016/j.biomaterials.2017.07.030
Liu, J., Guo, X., Luo, Z., Zhang, J., Li, M., & Cai, K. (2018). Hierarchically stimuli-responsive nanovectors for improved tumor penetration and programed tumor therapy. Nanoscale, 10(28), 13737-13750. doi:10.1039/c8nr02971g
Fang, J., Zhang, S., Xue, X., Zhu, X., Song, S., Wang, B., … Gao, L. (2018). Quercetin and doxorubicin co-delivery using mesoporous silica nanoparticles enhance the efficacy of gastric carcinoma chemotherapy. International Journal of Nanomedicine, Volume 13, 5113-5126. doi:10.2147/ijn.s170862
Yang, S., Chen, D., Li, N., Xu, Q., Li, H., Gu, F., … Lu, J. (2015). Hollow Mesoporous Silica Nanocarriers with Multifunctional Capping Agents for In Vivo Cancer Imaging and Therapy. Small, 12(3), 360-370. doi:10.1002/smll.201503121
Dai, L., Zhang, Q., Shen, X., Sun, Q., Mu, C., Gu, H., & Cai, K. (2016). A pH-responsive nanocontainer based on hydrazone-bearing hollow silica nanoparticles for targeted tumor therapy. Journal of Materials Chemistry B, 4(26), 4594-4604. doi:10.1039/c6tb01050d
Nejabat, M., Mohammadi, M., Abnous, K., Taghdisi, S. M., Ramezani, M., & Alibolandi, M. (2018). Fabrication of acetylated carboxymethylcellulose coated hollow mesoporous silica hybrid nanoparticles for nucleolin targeted delivery to colon adenocarcinoma. Carbohydrate Polymers, 197, 157-166. doi:10.1016/j.carbpol.2018.05.092
Murugan, C., Rayappan, K., Thangam, R., Bhanumathi, R., Shanthi, K., Vivek, R., … Kannan, S. (2016). Combinatorial nanocarrier based drug delivery approach for amalgamation of anti-tumor agents in breast cancer cells: an improved nanomedicine strategy. Scientific Reports, 6(1). doi:10.1038/srep34053
Xiao, X., Liu, Y., Guo, M., Fei, W., Zheng, H., Zhang, R., … Li, F. (2016). pH-triggered sustained release of arsenic trioxide by polyacrylic acid capped mesoporous silica nanoparticles for solid tumor treatment in vitro and in vivo. Journal of Biomaterials Applications, 31(1), 23-35. doi:10.1177/0885328216637211
Shao, L., Zhang, R., Lu, J., Zhao, C., Deng, X., & Wu, Y. (2017). Mesoporous Silica Coated Polydopamine Functionalized Reduced Graphene Oxide for Synergistic Targeted Chemo-Photothermal Therapy. ACS Applied Materials & Interfaces, 9(2), 1226-1236. doi:10.1021/acsami.6b11209
Murugan, C., Venkatesan, S., & Kannan, S. (2017). Cancer Therapeutic Proficiency of Dual-Targeted Mesoporous Silica Nanocomposite Endorses Combination Drug Delivery. ACS Omega, 2(11), 7959-7975. doi:10.1021/acsomega.7b00978
Babaei, M., Abnous, K., Taghdisi, S. M., Amel Farzad, S., Peivandi, M. T., Ramezani, M., & Alibolandi, M. (2017). Synthesis of theranostic epithelial cell adhesion molecule targeted mesoporous silica nanoparticle with gold gatekeeper for hepatocellular carcinoma. Nanomedicine, 12(11), 1261-1279. doi:10.2217/nnm-2017-0028
Zeiderman, M. R., Morgan, D. E., Christein, J. D., Grizzle, W. E., McMasters, K. M., & McNally, L. R. (2016). Acidic pH-Targeted Chitosan-Capped Mesoporous Silica Coated Gold Nanorods Facilitate Detection of Pancreatic Tumors via Multispectral Optoacoustic Tomography. ACS Biomaterials Science & Engineering, 2(7), 1108-1120. doi:10.1021/acsbiomaterials.6b00111
Mu, S., Liu, Y., Wang, T., Zhang, J., Jiang, D., Yu, X., & Zhang, N. (2017). Unsaturated nitrogen-rich polymer poly(l-histidine) gated reversibly switchable mesoporous silica nanoparticles using «graft to» strategy for drug controlled release. Acta Biomaterialia, 63, 150-162. doi:10.1016/j.actbio.2017.08.050
He, Y., Su, Z., Xue, L., Xu, H., & Zhang, C. (2016). Co-delivery of erlotinib and doxorubicin by pH-sensitive charge conversion nanocarrier for synergistic therapy. Journal of Controlled Release, 229, 80-92. doi:10.1016/j.jconrel.2016.03.001
Gupta, B., Ruttala, H. B., Poudel, B. K., Pathak, S., Regmi, S., Gautam, M., … Kim, J. O. (2018). Polyamino Acid Layer-by-Layer (LbL) Constructed Silica-Supported Mesoporous Titania Nanocarriers for Stimuli-Responsive Delivery of microRNA 708 and Paclitaxel for Combined Chemotherapy. ACS Applied Materials & Interfaces, 10(29), 24392-24405. doi:10.1021/acsami.8b06642
Choi, J. Y., Gupta, B., Ramasamy, T., Jeong, J.-H., Jin, S. G., Choi, H.-G., … Kim, J. O. (2018). PEGylated polyaminoacid-capped mesoporous silica nanoparticles for mitochondria-targeted delivery of celastrol in solid tumors. Colloids and Surfaces B: Biointerfaces, 165, 56-66. doi:10.1016/j.colsurfb.2018.02.015
Croissant, J. G., Zhang, D., Alsaiari, S., Lu, J., Deng, L., Tamanoi, F., … Khashab, N. M. (2016). Protein-gold clusters-capped mesoporous silica nanoparticles for high drug loading, autonomous gemcitabine/doxorubicin co-delivery, and in-vivo tumor imaging. Journal of Controlled Release, 229, 183-191. doi:10.1016/j.jconrel.2016.03.030
Wang, X., Niu, D., Hu, C., & Li, P. (2015). Polyethyleneimine-Based Nanocarriers for Gene Delivery. Current Pharmaceutical Design, 21(42), 6140-6156. doi:10.2174/1381612821666151027152907
You, Y., Yang, L., He, L., & Chen, T. (2016). Tailored mesoporous silica nanosystem with enhanced permeability of the blood–brain barrier to antagonize glioblastoma. Journal of Materials Chemistry B, 4(36), 5980-5990. doi:10.1039/c6tb01329e
Gupta, B., Poudel, B. K., Ruttala, H. B., Regmi, S., Pathak, S., Gautam, M., … Kim, J. O. (2018). Hyaluronic acid-capped compact silica-supported mesoporous titania nanoparticles for ligand-directed delivery of doxorubicin. Acta Biomaterialia, 80, 364-377. doi:10.1016/j.actbio.2018.09.006
Ma, B., He, L., You, Y., Mo, J., & Chen, T. (2018). Controlled synthesis and size effects of multifunctional mesoporous silica nanosystem for precise cancer therapy. Drug Delivery, 25(1), 293-306. doi:10.1080/10717544.2018.1425779
Yin, P. T., Pongkulapa, T., Cho, H.-Y., Han, J., Pasquale, N. J., Rabie, H., … Lee, K.-B. (2018). Overcoming Chemoresistance in Cancer via Combined MicroRNA Therapeutics with Anticancer Drugs Using Multifunctional Magnetic Core–Shell Nanoparticles. ACS Applied Materials & Interfaces, 10(32), 26954-26963. doi:10.1021/acsami.8b09086
Mamaeva, V., Niemi, R., Beck, M., Özliseli, E., Desai, D., Landor, S., … Sahlgren, C. (2016). Inhibiting Notch Activity in Breast Cancer Stem Cells by Glucose Functionalized Nanoparticles Carrying γ-secretase Inhibitors. Molecular Therapy, 24(5), 926-936. doi:10.1038/mt.2016.42
Shen, J., Liu, H., Mu, C., Wolfram, J., Zhang, W., Kim, H.-C., … Shen, H. (2017). Multi-step encapsulation of chemotherapy and gene silencing agents in functionalized mesoporous silica nanoparticles. Nanoscale, 9(16), 5329-5341. doi:10.1039/c7nr00377c
Khosraviyan, P., Shafiee Ardestani, M., Khoobi, M., Ostad, S. N., Dorkoosh, F. A., Akbari Javar, H., & Amanlou, M. (2016). Mesoporous silica nanoparticles functionalized with folic acid/methionine for active targeted delivery of docetaxel. OncoTargets and Therapy, Volume 9, 7315-7330. doi:10.2147/ott.s113815
Jin, R., Liu, Z., Bai, Y., Zhou, Y., Gooding, J. J., & Chen, X. (2018). Core-Satellite Mesoporous Silica-Gold Nanotheranostics for Biological Stimuli Triggered Multimodal Cancer Therapy. Advanced Functional Materials, 28(31), 1801961. doi:10.1002/adfm.201801961
Ryu, J. H., Messersmith, P. B., & Lee, H. (2018). Polydopamine Surface Chemistry: A Decade of Discovery. ACS Applied Materials & Interfaces, 10(9), 7523-7540. doi:10.1021/acsami.7b19865
Liu, Y., Ai, K., & Lu, L. (2014). Polydopamine and Its Derivative Materials: Synthesis and Promising Applications in Energy, Environmental, and Biomedical Fields. Chemical Reviews, 114(9), 5057-5115. doi:10.1021/cr400407a
Li, Y., Duo, Y., Bi, J., Zeng, X., Mei, L., Bao, S., … Yu, X. (2018). Targeted delivery of anti-miR-155 by functionalized mesoporous silica nanoparticles for colorectal cancer therapy. International Journal of Nanomedicine, Volume 13, 1241-1256. doi:10.2147/ijn.s158290
Cheng, W., Nie, J., Xu, L., Liang, C., Peng, Y., Liu, G., … Zeng, X. (2017). pH-Sensitive Delivery Vehicle Based on Folic Acid-Conjugated Polydopamine-Modified Mesoporous Silica Nanoparticles for Targeted Cancer Therapy. ACS Applied Materials & Interfaces, 9(22), 18462-18473. doi:10.1021/acsami.7b02457
Cheng, W., Liang, C., Xu, L., Liu, G., Gao, N., Tao, W., … Mei, L. (2017). TPGS-Functionalized Polydopamine-Modified Mesoporous Silica as Drug Nanocarriers for Enhanced Lung Cancer Chemotherapy against Multidrug Resistance. Small, 13(29), 1700623. doi:10.1002/smll.201700623
Duo, Y., Li, Y., Chen, C., Liu, B., Wang, X., Zeng, X., & Chen, H. (2017). DOX-loaded pH-sensitive mesoporous silica nanoparticles coated with PDA and PEG induce pro-death autophagy in breast cancer. RSC Advances, 7(63), 39641-39650. doi:10.1039/c7ra05135b
Bhagat, P. N., Jadhav, S. H., Chattopadhyay, S., & Paknikar, K. M. (2018). Carbon nanospheres mediated nuclear delivery of SMAR1 protein (DNA binding domain) controls breast tumor in mice model. Nanomedicine, 13(4), 353-372. doi:10.2217/nnm-2017-0298
Thiyagarajan, V., Lin, S.-X., Lee, C.-H., & Weng, C.-F. (2016). A focal adhesion kinase inhibitor 16-hydroxy-cleroda-3,13-dien-16,15-olide incorporated into enteric-coated nanoparticles for controlled anti-glioma drug delivery. Colloids and Surfaces B: Biointerfaces, 141, 120-131. doi:10.1016/j.colsurfb.2016.01.038
Srivastava, P., Hira, S. K., Srivastava, D. N., Singh, V. K., Gupta, U., Singh, R., … Manna, P. P. (2018). ATP-Decorated Mesoporous Silica for Biomineralization of Calcium Carbonate and P2 Purinergic Receptor-Mediated Antitumor Activity against Aggressive Lymphoma. ACS Applied Materials & Interfaces, 10(8), 6917-6929. doi:10.1021/acsami.7b18729
Wang, J., Xu, D., Deng, T., Li, Y., Xue, L., Yan, T., … Deng, D. (2018). Self-Decomposable Mesoporous Doxorubicin@Silica Nanocomposites for Nuclear Targeted Chemo-Photodynamic Combination Therapy. ACS Applied Nano Materials, 1(4), 1976-1984. doi:10.1021/acsanm.8b00486
Banala, V. T., Sharma, S., Barnwal, P., Urandur, S., Shukla, R. P., Ahmad, N., … Mishra, P. R. (2018). Synchronized Ratiometric Codelivery of Metformin and Topotecan through Engineered Nanocarrier Facilitates In Vivo Synergistic Precision Levels at Tumor Site. Advanced Healthcare Materials, 7(19), 1800300. doi:10.1002/adhm.201800300
Desai, D., Zhang, J., Sandholm, J., Lehtimäki, J., Grönroos, T., Tuomela, J., & Rosenholm, J. M. (2017). Lipid Bilayer-Gated Mesoporous Silica Nanocarriers for Tumor-Targeted Delivery of Zoledronic Acid in Vivo. Molecular Pharmaceutics, 14(9), 3218-3227. doi:10.1021/acs.molpharmaceut.7b00519
Xue, H., Yu, Z., Liu, Y., Yuan, W., Yang, T., You, J., … Xu, C. (2017). Delivery of miR-375 and doxorubicin hydrochloride by lipid-coated hollow mesoporous silica nanoparticles to overcome multiple drug resistance in hepatocellular carcinoma. International Journal of Nanomedicine, Volume 12, 5271-5287. doi:10.2147/ijn.s135306
LaBauve, A. E., Rinker, T. E., Noureddine, A., Serda, R. E., Howe, J. Y., Sherman, M. B., … Negrete, O. A. (2018). Lipid-Coated Mesoporous Silica Nanoparticles for the Delivery of the ML336 Antiviral to Inhibit Encephalitic Alphavirus Infection. Scientific Reports, 8(1). doi:10.1038/s41598-018-32033-w
Yuan, Z., Wu, W., Zhang, Z., Sun, Z., Cheng, R., Pan, G., … Cui, W. (2017). In situ adjuvant therapy using a responsive doxorubicin-loaded fibrous scaffold after tumor resection. Colloids and Surfaces B: Biointerfaces, 158, 363-369. doi:10.1016/j.colsurfb.2017.06.052
Sarkar, A., Ghosh, S., Chowdhury, S., Pandey, B., & Sil, P. C. (2016). Targeted delivery of quercetin loaded mesoporous silica nanoparticles to the breast cancer cells. Biochimica et Biophysica Acta (BBA) - General Subjects, 1860(10), 2065-2075. doi:10.1016/j.bbagen.2016.07.001
Wang, J., Wang, Y., Liu, Q., Yang, L., Zhu, R., Yu, C., & Wang, S. (2016). Rational Design of Multifunctional Dendritic Mesoporous Silica Nanoparticles to Load Curcumin and Enhance Efficacy for Breast Cancer Therapy. ACS Applied Materials & Interfaces, 8(40), 26511-26523. doi:10.1021/acsami.6b08400
Lai, C.-Y., Trewyn, B. G., Jeftinija, D. M., Jeftinija, K., Xu, S., Jeftinija, S., & Lin, V. S.-Y. (2003). A Mesoporous Silica Nanosphere-Based Carrier System with Chemically Removable CdS Nanoparticle Caps for Stimuli-Responsive Controlled Release of Neurotransmitters and Drug Molecules. Journal of the American Chemical Society, 125(15), 4451-4459. doi:10.1021/ja028650l
Tian, Y., Guo, R., Jiao, Y., Sun, Y., Shen, S., Wang, Y., … Yang, W. (2016). Redox stimuli-responsive hollow mesoporous silica nanocarriers for targeted drug delivery in cancer therapy. Nanoscale Horizons, 1(6), 480-487. doi:10.1039/c6nh00139d
Liu, H.-J., Luan, X., Feng, H.-Y., Dong, X., Yang, S.-C., Chen, Z.-J., … Fang, C. (2018). Integrated Combination Treatment Using a «Smart» Chemotherapy and MicroRNA Delivery System Improves Outcomes in an Orthotopic Colorectal Cancer Model. Advanced Functional Materials, 28(28), 1801118. doi:10.1002/adfm.201801118
Zhao, S., Xu, M., Cao, C., Yu, Q., Zhou, Y., & Liu, J. (2017). A redox-responsive strategy using mesoporous silica nanoparticles for co-delivery of siRNA and doxorubicin. Journal of Materials Chemistry B, 5(33), 6908-6919. doi:10.1039/c7tb00613f
Chen, Z., Zhu, P., Zhang, Y., Liu, Y., He, Y., Zhang, L., & Gao, Y. (2016). Enhanced Sensitivity of Cancer Stem Cells to Chemotherapy Using Functionalized Mesoporous Silica Nanoparticles. Molecular Pharmaceutics, 13(8), 2749-2759. doi:10.1021/acs.molpharmaceut.6b00352
Xie, J., Xiao, D., Zhao, J., Hu, N., Bao, Q., Jiang, L., & Yu, L. (2016). Mesoporous Silica Particles as a Multifunctional Delivery System for Pain Relief in Experimental Neuropathy. Advanced Healthcare Materials, 5(10), 1213-1221. doi:10.1002/adhm.201500996
Lu, Y., Yang, Y., Gu, Z., Zhang, J., Song, H., Xiang, G., & Yu, C. (2018). Glutathione-depletion mesoporous organosilica nanoparticles as a self-adjuvant and Co-delivery platform for enhanced cancer immunotherapy. Biomaterials, 175, 82-92. doi:10.1016/j.biomaterials.2018.05.025
Cheng, X., Li, D., Lin, A., Xu, J., Wu, L., Gu, H., … Yin, X. (2018). Fabrication of multifunctional triple-responsive platform based on CuS-capped periodic mesoporous organosilica nanoparticles for chemo-photothermal therapy. International Journal of Nanomedicine, Volume 13, 3661-3677. doi:10.2147/ijn.s167407
Zhou, J., Li, M., Lim, W. Q., Luo, Z., Phua, S. Z. F., Huo, R., … Zhao, Y. (2018). A Transferrin-Conjugated Hollow Nanoplatform for Redox-Controlled and Targeted Chemotherapy of Tumor with Reduced Inflammatory Reactions. Theranostics, 8(2), 518-532. doi:10.7150/thno.21194
Wang, Y., Huang, H.-Y., Yang, L., Zhang, Z., & Ji, H. (2016). Cetuximab-modified mesoporous silica nano-medicine specifically targets EGFR-mutant lung cancer and overcomes drug resistance. Scientific Reports, 6(1). doi:10.1038/srep25468
Hu, J.-J., Lei, Q., Peng, M.-Y., Zheng, D.-W., Chen, Y.-X., & Zhang, X.-Z. (2017). A positive feedback strategy for enhanced chemotherapy based on ROS-triggered self-accelerating drug release nanosystem. Biomaterials, 128, 136-146. doi:10.1016/j.biomaterials.2017.03.010
Shao, D., Li, M., Wang, Z., Zheng, X., Lao, Y.-H., Chang, Z., … Leong, K. W. (2018). Bioinspired Diselenide-Bridged Mesoporous Silica Nanoparticles for Dual-Responsive Protein Delivery. Advanced Materials, 30(29), 1801198. doi:10.1002/adma.201801198
Tan, S. Y., Teh, C., Ang, C. Y., Li, M., Li, P., Korzh, V., & Zhao, Y. (2017). Responsive mesoporous silica nanoparticles for sensing of hydrogen peroxide and simultaneous treatment toward heart failure. Nanoscale, 9(6), 2253-2261. doi:10.1039/c6nr08869d
Ren, S., Yang, J., Ma, L., Li, X., Wu, W., Liu, C., … Miao, L. (2018). Ternary-Responsive Drug Delivery with Activatable Dual Mode Contrast-Enhanced in Vivo Imaging. ACS Applied Materials & Interfaces, 10(38), 31947-31958. doi:10.1021/acsami.8b10564
Li, X., Zhao, W., Liu, X., Chen, K., Zhu, S., Shi, P., … Shi, J. (2016). Mesoporous manganese silicate coated silica nanoparticles as multi-stimuli-responsive T1-MRI contrast agents and drug delivery carriers. Acta Biomaterialia, 30, 378-387. doi:10.1016/j.actbio.2015.11.036
Yu, L., Chen, Y., Wu, M., Cai, X., Yao, H., Zhang, L., … Shi, J. (2016). «Manganese Extraction» Strategy Enables Tumor-Sensitive Biodegradability and Theranostics of Nanoparticles. Journal of the American Chemical Society, 138(31), 9881-9894. doi:10.1021/jacs.6b04299
Llopis-Lorente, A., Lozano-Torres, B., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2017). Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 5(17), 3069-3083. doi:10.1039/c7tb00348j
Li, E., Yang, Y., Hao, G., Yi, X., Zhang, S., Pan, Y., … Gao, M. (2018). Multifunctional Magnetic Mesoporous Silica Nanoagents for in vivo Enzyme-Responsive Drug Delivery and MR Imaging. Nanotheranostics, 2(3), 233-242. doi:10.7150/ntno.25565
García-Fernández, A., García-Laínez, G., Ferrándiz, M. L., Aznar, E., Sancenón, F., Alcaraz, M. J., … Orzáez, M. (2017). Targeting inflammasome by the inhibition of caspase-1 activity using capped mesoporous silica nanoparticles. Journal of Controlled Release, 248, 60-70. doi:10.1016/j.jconrel.2017.01.002
Srivastava, P., Hira, S. K., Srivastava, D. N., Gupta, U., Sen, P., Singh, R. A., & Manna, P. P. (2017). Protease-Responsive Targeted Delivery of Doxorubicin from Bilirubin-BSA-Capped Mesoporous Silica Nanoparticles against Colon Cancer. ACS Biomaterials Science & Engineering, 3(12), 3376-3385. doi:10.1021/acsbiomaterials.7b00635
Jiang, H., Shi, X., Yu, X., He, X., An, Y., & Lu, H. (2018). Hyaluronidase Enzyme-responsive Targeted Nanoparticles for Effective Delivery of 5-Fluorouracil in Colon Cancer. Pharmaceutical Research, 35(4). doi:10.1007/s11095-017-2302-4
Huang, L., Liu, J., Gao, F., Cheng, Q., Lu, B., Zheng, H., … Zeng, X. (2018). A dual-responsive, hyaluronic acid targeted drug delivery system based on hollow mesoporous silica nanoparticles for cancer therapy. Journal of Materials Chemistry B, 6(28), 4618-4629. doi:10.1039/c8tb00989a
Ding, J., Liang, T., Zhou, Y., He, Z., Min, Q., Jiang, L., & Zhu, J. (2016). Hyaluronidase-triggered anticancer drug and siRNA delivery from cascaded targeting nanoparticles for drug-resistant breast cancer therapy. Nano Research, 10(2), 690-703. doi:10.1007/s12274-016-1328-y
Yang, D., Wang, T., Su, Z., Xue, L., Mo, R., & Zhang, C. (2016). Reversing Cancer Multidrug Resistance in Xenograft Models via Orchestrating Multiple Actions of Functional Mesoporous Silica Nanoparticles. ACS Applied Materials & Interfaces, 8(34), 22431-22441. doi:10.1021/acsami.6b04885
Ding, Y., Song, Z., Liu, Q., Wei, S., Zhou, L., Zhou, J., & Shen, J. (2017). An enhanced chemotherapeutic effect facilitated by sonication of MSN. Dalton Transactions, 46(35), 11875-11883. doi:10.1039/c7dt02600e
Zhou, J., Wang, M., Ying, H., Su, D., Zhang, H., Lu, G., & Chen, J. (2018). Extracellular Matrix Component Shelled Nanoparticles as Dual Enzyme-Responsive Drug Delivery Vehicles for Cancer Therapy. ACS Biomaterials Science & Engineering, 4(7), 2404-2411. doi:10.1021/acsbiomaterials.8b00327
Yang, Y.-W., Sun, Y.-L., & Song, N. (2014). Switchable Host–Guest Systems on Surfaces. Accounts of Chemical Research, 47(7), 1950-1960. doi:10.1021/ar500022f
Ambrogio, M. W., Thomas, C. R., Zhao, Y.-L., Zink, J. I., & Stoddart, J. F. (2011). Mechanized Silica Nanoparticles: A New Frontier in Theranostic Nanomedicine. Accounts of Chemical Research, 44(10), 903-913. doi:10.1021/ar200018x
Gayam, S. R., Venkatesan, P., Sung, Y.-M., Sung, S.-Y., Hu, S.-H., Hsu, H.-Y., & Wu, S.-P. (2016). An NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme responsive nanocarrier based on mesoporous silica nanoparticles for tumor targeted drug delivery in vitro and in vivo. Nanoscale, 8(24), 12307-12317. doi:10.1039/c6nr03525f
Lee, J., Oh, E.-T., Yoon, H., Woo Kim, C., Han, Y., Song, J., … Kim, C. (2017). Mesoporous nanocarriers with a stimulus-responsive cyclodextrin gatekeeper for targeting tumor hypoxia. Nanoscale, 9(20), 6901-6909. doi:10.1039/c7nr00808b
Muñoz‐Espín, D., Rovira, M., Galiana, I., Giménez, C., Lozano‐Torres, B., Paez‐Ribes, M., … Serrano, M. (2018). A versatile drug delivery system targeting senescent cells. EMBO Molecular Medicine, 10(9). doi:10.15252/emmm.201809355
Srivastava, P., Hira, S. K., Sharma, A., Kashif, M., Srivastava, P., Srivastava, D. N., … Manna, P. P. (2018). Telomerase Responsive Delivery of Doxorubicin from Mesoporous Silica Nanoparticles in Multiple Malignancies: Therapeutic Efficacies against Experimental Aggressive Murine Lymphoma. Bioconjugate Chemistry, 29(6), 2107-2119. doi:10.1021/acs.bioconjchem.8b00342
Pascual, L., Cerqueira-Coutinho, C., García-Fernández, A., de Luis, B., Bernardes, E. S., Albernaz, M. S., … Sancenón, F. (2017). MUC1 aptamer-capped mesoporous silica nanoparticles for controlled drug delivery and radio-imaging applications. Nanomedicine: Nanotechnology, Biology and Medicine, 13(8), 2495-2505. doi:10.1016/j.nano.2017.08.006
Yang, S., Han, X., Yang, Y., Qiao, H., Yu, Z., Liu, Y., … Tang, T. (2018). Bacteria-Targeting Nanoparticles with Microenvironment-Responsive Antibiotic Release To Eliminate Intracellular Staphylococcus aureus and Associated Infection. ACS Applied Materials & Interfaces, 10(17), 14299-14311. doi:10.1021/acsami.7b15678
Teruel, A. H., Pérez-Esteve, É., González-Álvarez, I., González-Álvarez, M., Costero, A. M., Ferri, D., … Sancenón, F. (2018). Smart gated magnetic silica mesoporous particles for targeted colon drug delivery: New approaches for inflammatory bowel diseases treatment. Journal of Controlled Release, 281, 58-69. doi:10.1016/j.jconrel.2018.05.007
Teruel, A. H., Pérez-Esteve, É., González-Álvarez, I., González-Álvarez, M., Costero, A. M., Ferri, D., … Sancenón, F. (2019). Double Drug Delivery Using Capped Mesoporous Silica Microparticles for the Effective Treatment of Inflammatory Bowel Disease. Molecular Pharmaceutics, 16(6), 2418-2429. doi:10.1021/acs.molpharmaceut.9b00041
Mal, N. K., Fujiwara, M., & Tanaka, Y. (2003). Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature, 421(6921), 350-353. doi:10.1038/nature01362
Mal, N. K., Fujiwara, M., Tanaka, Y., Taguchi, T., & Matsukata, M. (2003). Photo-Switched Storage and Release of Guest Molecules in the Pore Void of Coumarin-Modified MCM-41. Chemistry of Materials, 15(17), 3385-3394. doi:10.1021/cm0343296
An, J., Yang, X.-Q., Cheng, K., Song, X.-L., Zhang, L., Li, C., … Liu, B. (2017). In Vivo Computed Tomography/Photoacoustic Imaging and NIR-Triggered Chemo–Photothermal Combined Therapy Based on a Gold Nanostar-, Mesoporous Silica-, and Thermosensitive Liposome-Composited Nanoprobe. ACS Applied Materials & Interfaces, 9(48), 41748-41759. doi:10.1021/acsami.7b15296
Duan, S., Yang, Y., Zhang, C., Zhao, N., & Xu, F.-J. (2016). NIR-Responsive Polycationic Gatekeeper-Cloaked Hetero-Nanoparticles for Multimodal Imaging-Guided Triple-Combination Therapy of Cancer. Small, 13(9), 1603133. doi:10.1002/smll.201603133
Chen, X., Zhang, Q., Li, J., Yang, M., Zhao, N., & Xu, F.-J. (2018). Rattle-Structured Rough Nanocapsules with in-Situ-Formed Gold Nanorod Cores for Complementary Gene/Chemo/Photothermal Therapy. ACS Nano, 12(6), 5646-5656. doi:10.1021/acsnano.8b01440
Xu, J., Wang, X., Teng, Z., Lu, G., He, N., & Wang, Z. (2018). Multifunctional Yolk–Shell Mesoporous Silica Obtained via Selectively Etching the Shell: A Therapeutic Nanoplatform for Cancer Therapy. ACS Applied Materials & Interfaces, 10(29), 24440-24449. doi:10.1021/acsami.8b08574
Zhang, L., Chen, Y., Li, Z., Li, L., Saint-Cricq, P., Li, C., … Zink, J. I. (2016). Tailored Synthesis of Octopus-type Janus Nanoparticles for Synergistic Actively-Targeted and Chemo-Photothermal Therapy. Angewandte Chemie International Edition, 55(6), 2118-2121. doi:10.1002/anie.201510409
Han, R.-L., Shi, J.-H., Liu, Z.-J., Hou, Y.-F., & Wang, Y. (2018). Near-Infrared Light-Triggered Hydrophobic-to-Hydrophilic Switch Nanovalve for On-Demand Cancer Therapy. ACS Biomaterials Science & Engineering, 4(10), 3478-3486. doi:10.1021/acsbiomaterials.8b00437
Zhang, Y., Ren, K., Zhang, X., Chao, Z., Yang, Y., Ye, D., … Ju, H. (2018). Photo-tearable tape close-wrapped upconversion nanocapsules for near-infrared modulated efficient siRNA delivery and therapy. Biomaterials, 163, 55-66. doi:10.1016/j.biomaterials.2018.02.019
Su, J., Sun, H., Meng, Q., Zhang, P., Yin, Q., & Li, Y. (2017). Enhanced Blood Suspensibility and Laser-Activated Tumor-specific Drug Release of Theranostic Mesoporous Silica Nanoparticles by Functionalizing with Erythrocyte Membranes. Theranostics, 7(3), 523-537. doi:10.7150/thno.17259
Xuan, M., Shao, J., Zhao, J., Li, Q., Dai, L., & Li, J. (2018). Magnetic Mesoporous Silica Nanoparticles Cloaked by Red Blood Cell Membranes: Applications in Cancer Therapy. Angewandte Chemie International Edition, 57(21), 6049-6053. doi:10.1002/anie.201712996
Thapa, R. K., Nguyen, H. T., Gautam, M., Shrestha, A., Lee, E. S., Ku, S. K., … Kim, J. O. (2017). Hydrophobic binding peptide-conjugated hybrid lipid-mesoporous silica nanoparticles for effective chemo-photothermal therapy of pancreatic cancer. Drug Delivery, 24(1), 1690-1702. doi:10.1080/10717544.2017.1396382
Li, Z., Zhang, H., Han, J., Chen, Y., Lin, H., & Yang, T. (2018). Surface Nanopore Engineering of 2D MXenes for Targeted and Synergistic Multitherapies of Hepatocellular Carcinoma. Advanced Materials, 30(25), 1706981. doi:10.1002/adma.201706981
Lei, Q., Wang, S.-B., Hu, J.-J., Lin, Y.-X., Zhu, C.-H., Rong, L., & Zhang, X.-Z. (2017). Stimuli-Responsive «Cluster Bomb» for Programmed Tumor Therapy. ACS Nano, 11(7), 7201-7214. doi:10.1021/acsnano.7b03088
Feng, Y., Li, N., Yin, H., Chen, T., Yang, Q., & Wu, M. (2018). Thermo- and pH-responsive, Lipid-coated, Mesoporous Silica Nanoparticle-based Dual Drug Delivery System To Improve the Antitumor Effect of Hydrophobic Drugs. Molecular Pharmaceutics, 16(1), 422-436. doi:10.1021/acs.molpharmaceut.8b01073
Qi, X., Yu, D., Jia, B., Jin, C., Liu, X., Zhao, X., & Zhang, G. (2015). Targeting CD133+ laryngeal carcinoma cells with chemotherapeutic drugs and siRNA against ABCG2 mediated by thermo/pH-sensitive mesoporous silica nanoparticles. Tumor Biology, 37(2), 2209-2217. doi:10.1007/s13277-015-4007-9
Liu, X., Yu, D., Jin, C., Song, X., Cheng, J., Zhao, X., … Zhang, G. (2014). A dual responsive targeted drug delivery system based on smart polymer coated mesoporous silica for laryngeal carcinoma treatment. New J. Chem., 38(10), 4830-4836. doi:10.1039/c4nj00579a
Guisasola, E., Asín, L., Beola, L., de la Fuente, J. M., Baeza, A., & Vallet-Regí, M. (2018). Beyond Traditional Hyperthermia: In Vivo Cancer Treatment with Magnetic-Responsive Mesoporous Silica Nanocarriers. ACS Applied Materials & Interfaces, 10(15), 12518-12525. doi:10.1021/acsami.8b02398
Lv, Y., Cao, Y., Li, P., Liu, J., Chen, H., Hu, W., & Zhang, L. (2017). Ultrasound-Triggered Destruction of Folate-Functionalized Mesoporous Silica Nanoparticle-Loaded Microbubble for Targeted Tumor Therapy. Advanced Healthcare Materials, 6(18), 1700354. doi:10.1002/adhm.201700354
Wang, J., Jiao, Y., & Shao, Y. (2018). Mesoporous Silica Nanoparticles for Dual-Mode Chemo-Sonodynamic Therapy by Low-Energy Ultrasound. Materials, 11(10), 2041. doi:10.3390/ma11102041
Anirudhan, T. S., & Nair, A. S. (2018). Temperature and ultrasound sensitive gatekeepers for the controlled release of chemotherapeutic drugs from mesoporous silica nanoparticles. Journal of Materials Chemistry B, 6(3), 428-439. doi:10.1039/c7tb02292a
Hou, L., Zheng, Y., Wang, Y., Hu, Y., Shi, J., Liu, Q., … Zhang, Z. (2018). Self-Regulated Carboxyphenylboronic Acid-Modified Mesoporous Silica Nanoparticles with «Touch Switch» Releasing Property for Insulin Delivery. ACS Applied Materials & Interfaces, 10(26), 21927-21938. doi:10.1021/acsami.8b06998
Velikova, N., Mas, N., Miguel-Romero, L., Polo, L., Stolte, E., Zaccaria, E., … Wells, J. (2017). Broadening the antibacterial spectrum of histidine kinase autophosphorylation inhibitors via the use of ε-poly-L-lysine capped mesoporous silica-based nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 13(2), 569-581. doi:10.1016/j.nano.2016.09.011
Bernardos, A., Piacenza, E., Sancenón, F., Hamidi, M., Maleki, A., Turner, R. J., & Martínez‐Máñez, R. (2019). Mesoporous Silica‐Based Materials with Bactericidal Properties. Small, 15(24), 1900669. doi:10.1002/smll.201900669
Jafari, S., Derakhshankhah, H., Alaei, L., Fattahi, A., Varnamkhasti, B. S., & Saboury, A. A. (2019). Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomedicine & Pharmacotherapy, 109, 1100-1111. doi:10.1016/j.biopha.2018.10.167
Croissant, J. G., Fatieiev, Y., & Khashab, N. M. (2017). Degradability and Clearance of Silicon, Organosilica, Silsesquioxane, Silica Mixed Oxide, and Mesoporous Silica Nanoparticles. Advanced Materials, 29(9), 1604634. doi:10.1002/adma.201604634
Lindén, M. (2018). Biodistribution and Excretion of Intravenously Injected Mesoporous Silica Nanoparticles: Implications for Drug Delivery Efficiency and Safety. Mesoporous Silica-based Nanomaterials and Biomedical Applications, Part A, 155-180. doi:10.1016/bs.enz.2018.07.007
Xie, J., Lee, S., & Chen, X. (2010). Nanoparticle-based theranostic agents. Advanced Drug Delivery Reviews, 62(11), 1064-1079. doi:10.1016/j.addr.2010.07.009
Bunker, B. C. (1994). Molecular mechanisms for corrosion of silica and silicate glasses. Journal of Non-Crystalline Solids, 179, 300-308. doi:10.1016/0022-3093(94)90708-0
Popplewell, J. ., King, S. ., Day, J. ., Ackrill, P., Fifield, L. ., Cresswell, R. ., … Liu, K. (1998). Kinetics of uptake and elimination of silicic acid by a human subject: A novel application of 32Si and accelerator mass spectrometry. Journal of Inorganic Biochemistry, 69(3), 177-180. doi:10.1016/s0162-0134(97)10016-2
Hao, N., Liu, H., Li, L., Chen, D., Li, L., & Tang, F. (2012). In Vitro Degradation Behavior of Silica Nanoparticles Under Physiological Conditions. Journal of Nanoscience and Nanotechnology, 12(8), 6346-6354. doi:10.1166/jnn.2012.6199
NIH U.S. National Library of Medicine ClinicalTrials.gov retrieved fromhttps://clinicaltrials.gov/(accessed: April2019).
[-]